CSE351,

Summer 2018

w UNIVERSITY of WASHINGTON L22: Memory Allocation Il

Memory Allocation lli
CSE 351 Summer 2018

Instructor:
Justin Hsia

Teaching Assistants:
Josie Lee

Natalie Andreeva
Teagan Horkan

WHEN A USER TAKES A PHOTO
THE APP SHOULD CHECK WHETHER
THEYRE IN A NATIONAL PARK...

SURE, EASY GIS LOOKUR
GIMME A FEW HOURS,

« AND CHECK WHETHER
THE PHOTD IS OF A BIRD.

T{L NEED A RESEARCH

% TEFMHNDFNE/YEHRE

INCS, IT CAN BE HARD TO EXFLAIN

THE DIFFERENCE BETWEEN THE EASY
AND THE VIRTUALLY IMPOSSIBLE.
https://xkcd.com/1425/

W UNIVERSITY of WASHINGTON L22: Memory Allocation Il

Administrivia

+» Homework 5 due tonight
+» Lab 5 due next Friday (8/17)

" Aim to finish Wed; no late submissions allowed

+» Final Exam: Friday, 8/17 in lecture

= Review Session: Wed, 8/15 @ 5:00 pm in EEB 045
= NOT cumulative

" You get ONE double-sided handwritten 8.5X11” cheat sheet
" | ook for extra office hours next week

WA/ UNIVERSITY of WASHINGTON L22: Memory Allocation Iil CSE351, Summer 2018

Do we always need the boundary tags?

Allocated block: Free bIocI} predecenof allocghes 7
size a Size ag
AN is-alloched 7
next
payload and prev
padding
a ’gn\’v\ely:é\, size } d F} sﬂ\ —H\ere.l

(same as implicit free list)

+» Lab 5 suggests no...

W UNIVERSITY of WASHINGTON L22: Memory Allocation IlI CSE351, Summer 2018

= 4-byte box (free)

Keeping Track of Free Blocks _ a-byte box (allocated)

1) Implicit free list using length — links all blocks using math
" No actual pointers, and must check each block if allocated or free

- A R
- ~
- ' Ao~ »

20 16 24 8

2) Explicit free list among only the free blocks, using pointers

/\

20 16 24 8

3) Segregated free list

= Different free lists for different size “classes”

4) Blocks sorted by size

= Can use a balanced binary tree (e.g. red-black tree) with pointers within
each free block, and the length used as a key

w UNIVERSITY of WASHINGTON L22: Memory Allocation IlI CSE351, Summer 2018

Segregated List (Seglist) Allocators

« Each size class of blocks has its own free list
+ Organized as an array of free lists

Size class
(in bytes)

\ 4
\ 4
\ 4

\
)
l

a”—\J
$ 24-32

l

> 40-inf —

+ Often have separate classes for each small size
+ For larger sizes: One class for each two-power size

w UNIVERSITY of WASHINGTON L22: Memory Allocation Il CSE351, Summer 2018

Allocation Policy Tradeoffs

« Data structure of blocks on lists

" Implicit (free7a|located), explicit (free), segregated (many
free lists) — others possible!

L)

0‘0

Placement policy: first-fit, next-fit, best-fit

" Throughput vs. amount of fragmentation

*

When do we split free blocks?
®" How much internal fragmentation are we willing to tolerate?

*

When do we coalesce free blocks? Leve dstumed his

o o . . L/U\ "'O Nnow
" Immediate coalescing: Every time freeiscalled f

L)

= Deferred coalescing: Defer coalescing until needed

- e.g. when scanning free list for mal loc or when external
fragmentation reaches some threshold

WA/ UNIVERSITY of WASHINGTON

L22: Memory Allocation IlI

CSE351, Summer 2018

More Info on Allocators

+ D. Knuth, “The Art of Computer Programming”, 2"°
edition, Addison Wesley, 1973

" The classic reference on dynamic storage allocation

+» Wilson et al, “Dynamic Storage Allocation: A Survey
and Critical Review”, Proc. 1995 Int’l Workshop on

Memory Management, Kinross, Scotland, Sept, 1995.
"= Comprehensive survey

= Available from CS:APP student site (csapp.cs.cmu.edu)

w UNIVERSITY of WASHINGTON L22: Memory Allocation Il

Memory Allocation

*

Dynamic memory allocation

" |Introduction and goals

= Allocation and deallocation (free)
" Fragmentation

*

Explicit allocation implementation
= Implicit free lists

= Explicit free lists (Lab 5)

= Segregated free lists

*

Implicit deallocation: garbage collection

4

» Common memory-related bugs in C

CSE351, Summer 2018

WA UNIVERSITY of WASHINGTON L22: Memory Allocation Ill CSE351, Summer 2018

Wouldn’t it be nice...

+ If we never had to free memory?
+» Do you free objects in Java?

= Reminder: implicit allocator

w UNIVERSITY of WASHINGTON L22: Memory Allocation Il CSE351, Summer 2018

Garbage Collection (GC)

(Automatic Memory Management)

+ Garbage collection: automatic reclamation of heap-allocated
storage — application never explicitly frees memory
void foo() {

int* p = (int*) malloc(128);
return; /* p block 1s now garbage! */

}

+» Common in implementations of functional languages, scripting
languages, and modern object oriented languages:

= Lisp, Racket, Erlang, ML, Haskell, Scala, Java, C#, Perl, Ruby, Python, Lua,
JavaScript, Dart, Mathematica, MATLAB, many more...

+ Variants (“conservative” garbage collectors) exist for C and C++
= However, cannot necessarily collect all garbage

10

CSE351, Summer 2018

WA UNIVERSITY of WASHINGTON L22: Memory Allocation Il

Garbage Collection

+» How does the memory allocator know when memory

can be freed?

" |n general, we cannot know what is going to be used in the
future since it depends on conditionals

"= But, we can tell that certain blocks cannot be used if they
are unreachable (via pointers in registers/stack/globals)

+» Memory allocator needs to know what is a pointer
and what is not — how can it do this?

= Sometimes with help from the compiler

11

w UNIVERSITY of WASHINGTON L22: Memory Allocation Il CSE351, Summer 2018

Memory as a Graph

+» We view memory as a directed graph
= Each allocated heap block is a node in the graph
= Each pointer is an edge in the graph

" Locations not in the heap that contain pointers into the heap are called
root nodes (e.g. registers, stack locations, global variables)

Root nodes Q Q Q <

\00\""\'@0 I \jour \o‘ro(,ess

Heap nodes O reachable
Lok S [T 1c1) not reachable
6 block | (garbage)
wnae 7 - e O °

\
(of\'\o“ nS ?°

A node (block) is reachable if there is a path from any root to that node
Non-reachable nodes are garbage (cannot be needed by the application)

12

CSE351, Summer 2018

W UNIVERSITY of WASHINGTON L22: Memory Allocation Il

Garbage Collection

+» Dynamic memory allocator can free blocks if there are
no pointers to them

/

+» How can it know what is a pointer and what is not?

+» We’'ll make some assumptions about pointers:

= Memory aIIoca?or can distinguish pointers from non-
pointers «.
= All pointers point to the start of a block in the heap

= Application cannot hide pointers
(e.g. by coercing them to an INt, and then back again)

13

w UNIVERSITY of WASHINGTON L22: Memory Allocation Il CSE351, Summer 2018

Classical GC Algorithms

+» Mark-and-sweep collection (McCarthy, 1960)
= Does not move blocks (unless you also “compact”)
+ Reference counting (Collins, 1960)
= Does not move blocks (not discussed)
+ Copying collection (Minsky, 1963)
= Moves blocks (not discussed)
+ Generational Collectors (Lieberman and Hewitt, 1983)

"= Most allocations become garbage very soon, so
focus reclamation work on zones of memory recently allocated.

« For more information:

= Jones, Hosking, and Moss, The Garbage Collection Handbook: The Art of
Automatic Memory Management, CRC Press, 2012.

= Jones and Lin, Garbage Collection: Algorithms for Automatic Dynamic
Memory, John Wiley & Sons, 1996.

14

w UNIVERSITY of WASHINGTON L22: Memory Allocation Il CSE351, Summer 2018

Mark and Sweep Collecting

+ Can build on top of mal loc/free package

= Allocate using mal loc until you “run out of space”

+» When out of space:
= Use extra mark bit in the header of each bloclé'

Simila~ o
;S—a\\ocd¢&7 B\qp

= Mark: Start at roots and set mark bit on each reachable block
= Sweep: Scan all blocks and free blocks that are not marked

Arrows are NOT
e o z@«@ 0 | e

<edr Vv

Swoee ’\/\A/\mb
After mark i It I %; I |2 I) p_l_l Mark bit set

AN BN
After sweep || | free | 1 e | H

15

W UNIVERSITY of WASHINGTON L22: Memory Allocation Il

CSE351, Summer 2018

Assumptions For a Simple Implementation

[Non-testable]
» Application can use functions to allocate memory: Material

= pb=new(n) returns pointer, b, to new block with all locations cleared

= p[1] read location 1 of block b into register

= p[i]=Vv write V into location 1 of block b

» Each block will have a header word (accessed at b[-1])

Functions used by the garbage collector:

= 1s_ptr(p) determines whether p is a pointer to a block

= length(p) returns length of block pointed to by p, not including
o header

.ret—rOOtS(Sl returns all the roots

16

CSE351, Summer 2018

W UNIVERSITY of WASHINGTON

Mark

L22: Memory Allocation IlI

X = ﬁ€+_r06\5 @)

for P m X

Non-testable
Material

J

« Mark using depth-first traversal of the memory graph

ptr mark(ptr p) {
iIf (lis_ptr(p)) return;
iIT (markBitSet(p)) return;
setMarkBit(p);

for (1=0;

return;

i<length(p); i1++)

mark(pLiD):

// p: some word in a heap block

// do nothing 1f not pointer

// check 1t already marked

// set the mark bit T owsbs 9
// recursively call mark on S
// all words in the block’y iy

GWA

o ph

ond

Yrovec)

root
/\¥ 4//’"\]>T_
Before mark I: I I zl _I

After mark

\

\4

m_l Mark bit

set

17

CSE351, Summer 2018

W UNIVERSITY of WASHINGTON

Sweep

«» Sweep using sizes in headers

L22: Memory Allocation IlI

[Non-testable

Material

J

ptr sweep(ptr p, ptr end) {
while (p < end) {
It (markBitSet(p))
clearMarkBit(p);

// ptrs to start & end of heap
// while not at end of heap
// check 1T block i1s marked

// 1T so, reset mark bit

else 1T (allocateBitSet(p)) // it not marked, but allocated

// free the block
// adjust pointer to next block

next free(p);
hlo¢k ——p += length(p);
+
+
After mark

N

After sweep |_

fre

(e T

m_l Mark bit set

18

WA UNIVERSITY of WASHINGTON L22: Memory Allocation Il

CSE351, Summer 2018

Non-testable]

Conservative Mark & Sweep in C [

+» Would mark & sweep work in C?

= IS _ptrdetermines if a word is a pointer by checking if it points to an
allocated block of memory

= Butin C, pointers can point into the middle of allocated blocks
(not so in Java)

Makes it tricky to find all allocated blocks in mark phase

ptr
header 1

" There are ways to solve/avoid this problem in C, but the resulting
garbage collector is conservative:

Every reachable node correctly identified as reachable, but some unreachable
nodes might be incorrectly marked as reachable

" |nJava, all pointers (i.e. references) point to the starting address of an
object structure — the start of an allocated block

19

CSE351, Summer 2018

W UNIVERSITY of WASHINGTON

L22: Memory Allocation IlI

Memory-Related Perils and Pitfalls in C

Program stop

Slide possible?
Bad order of operations L4 \(
Bad pointer arithmetic 26 Y
Dereferencing a non-pointer 2| N
Freed block — access again 30 Y
Freed block — free again 29 \I/
Memory leak — failing to free memory Y N
No bounds checking 25 Y
Off-by-one error 2.4 Y
Reading uninitialized memory 22 N
Referencing nonexistent variable 2Eg N
Wrong allocation size 23 \1/

20

WA/ UNIVERSITY of WASHINGTON L22: Memory Allocation Ill CSE351, Summer 2018

Find That Bug! (Slide 21)

+ The classic scant bug
= Int scanf(const char *format)

int val;

scanF('%d", val); k- reds inpif, punes it stores i loadion vl

§e9‘Fau\'\ F vl

does gt eAtain
dereferenci ng o Valid address
aQ Y\W\-pb.\h'\'?r
Error C Prog stop \(Fix: scont ("‘AA, é’:"’*‘),'
Type: Possible?

21

WA/ UNIVERSITY of WASHINGTON L22: Memory Allocation Iil CSE351, Summer 2018

Find That Bug! (Slide 22)

/* return y = Ax */

int *matvec(int **A, iInt *x) {
int *y = (int *)malloc(N*sizeof(int));

int 1, j;

for (1=0; i<N; 1++)
for (J=0; J<N; jJ++)
yLil1(+=>AL10O1 * xO1;
yUJ = yTid+ ATIG)* } 3,
return y; £

1 Yeads 3&7‘5&96 !

- A'is NxN matrix, X is N-sized vector (so product is vector of size N)
- N defined elsewhere (#defi1ne)

ﬁiﬁ%ﬁ%@\ 6\6\ Wing gor\bs:ge, \/a\ue S
Memory — runs ‘ane \»:"56" ueirA YEN.HS
Error Prog stop Fix:
Type: I Possible? N calloc (N, sigedt (int))

22

WA/ UNIVERSITY of WASHINGTON L22: Memory Allocation Iil CSE351, Summer 2018

Find That Bug! (Slide 23)

int **p;

= (int **)malloc(N * sizeof(int));
/Cfa\locod‘es N ks = 4N bytes
for (int 1=0; I<N; 1++) {
p[1] = (int *)malloc(M * sizeof(int));
P Uit b N o= SN brkes

- N and M defined elsewhere (#defi1ne)

—

wron runs c‘H: em()
a\locoFion ot alowded
size L\ock
Error]< Prog stop Y Fix: N ¥ sized (‘ufd’“‘)
Type: Possible? o

23

WA/ UNIVERSITY of WASHINGTON L22: Memory Allocation Iil CSE351, Summer 2018

Find That Bug! (Slide 24)

int **p;

p = (int **)malloc(N * sizeof(int*));
o eesses NH elements
for (int i=0; [i<=N;| i++) {
/
p[1] = (int *)malloc(M * sizeof(int));

}
sfF-by-ome
eyvor
Error H Prog stop \(Fix: 1< N
Type: Possible?

24

WA/ UNIVERSITY of WASHINGTON L22: Memory Allocation Ill CSE351, Summer 2018

Find That Bug! (Slide 25)

char s[8]; //sall buffer
int 1;

gets(s); /* reads '123456789" from stdin */

0o kounds che Ck'lnﬁ buffer overf 'ow!
Error G Prog stop Y Fix: ‘Fgeis (s ; i)
Type: Possible?

25

WA UNIVERSITY of WASHINGTON L22: Memory Allocation Ill CSE351, Summer 2018

Find That Bug! (Slide 26)

Int *search(int *p, Int val) {
\So Wo

- L/a nds| checkin

while (p && (p 1= val) % <he3

p += sizeof(int);

P "':L‘)' —> stride 168

return p;
by
it val ngfurd
bo‘d Pbih—‘-er Wl run Q'F'(: ew()\)
G\rﬂ'kme+ ic of G rovy
Error B Prog stop \r Fix: pt+
Type: Possible? add lbounds check

26

WA/ UNIVERSITY of WASHINGTON L22: Memory Allocation Iil CSE351, Summer 2018

Find That Bug! (Slide 27)

Int* getPacket(int** packets, Int* size) {
Int* packet;
packet = packets|O0];
packets[0] = packets[*size - 1];

dee —2>(*si1ze-- // what 1s happening here?

‘ r erPackets(packets, *size);

return packet;

}

« “—=="happens first

o Vo
oder of ot e ey
OPer&honS be\ow s'\:zé)
Error A Prog stop Y Fix: Q’S—.ze>-—
Type: Possible?

27

WA/ UNIVERSITY of WASHINGTON L22: Memory Allocation Ill CSE351, Summer 2018

Find That Bug! (Slide 28)

int* foo() { —)
I ;)
int val; | .
: — [¢ - >'#
return &val; —ﬁ““()— e W\
}
Te‘fereng;\i\ﬁ_‘. Va\l—() GJLA res)
honeXiStTe~
VOJ’TO.Lle 5 6n ‘H'\e S"B\Lk
Error \j Prog stop N Fix: P“"“ﬂ'w&reﬂf o oo
Type: Possible? or wie malloc mstead

28

W UNIVERSITY of WASHINGTON L22: Memory Allocation I CSE351, Summer 2018

Find That Bug! (Slide 29)

X = (int*)malloc(N * sizeof(int));
<manipulate x>
free(X);

y = (int*®)malloc(M * sizeof(int));
~ <manipulate y>
free(x);

U\y\dd 'med be}%\v?or
free gain Come sty o1 s5hul)

Type: L Possible?

Error | Prog stop Y Fix: e ()‘>

L’ P(OLaloly (/N 4YP

29

WA/ UNIVERSITY of WASHINGTON L22: Memory Allocation Iil CSE351, Summer 2018

Find That Bug! (Slide 30)

X = (int*)malloc(N * sizeof(int));
<manipulate x>
free(x);

y = (int*)malloc(M * sizeof(int));
for (1=0; I<M; 1++)

VI = 6T

ndefinedh
Otesy ‘Fr@a Memory wvi\)r

Error D Prog stop \(Fix: ﬂcmc(x) lete
Type: Possible? ok ,OO,“O,Q

30

WA/ UNIVERSITY of WASHINGTON L22: Memory Allocation Iil CSE351, Summer 2018

Find That Bug! (Slide 31)

typedef struct L {
int val;
struct L *next;
} list;

void foo() {
list *head = (list *) malloc(sizeof(list));
head->val = O;
head->next = NULL;
<create and manipulate the rest of the list>

free(head);
Feturn; T .\, fees fist node’
}
bew do YYor
Error = Prog stop \J Fix; recursive/ tteradive
Type: Possible? free ower lisk

31

w UNIVERSITY of WASHINGTON L22: Memory Allocation Il CSE351, Summer 2018

Dealing With Memory Bugs

+» Conventional debugger (gdb)
" Good for finding bad pointer dereferences
®" Hard to detect the other memory bugs

+» Debugging mal loc (UToronto CSRI mal loc)

= Wrapper around conventional mal loc

= Detects memory bugs at mal loc and free boundaries
- Memory overwrites that corrupt heap structures
- Some instances of freeing blocks multiple times
- Memory leaks
" Cannot detect all memory bugs
- Overwrites into the middle of allocated blocks
- Freeing block twice that has been reallocated in the interim
- Referencing freed blocks

32

w UNIVERSITY of WASHINGTON L22: Memory Allocation Il CSE351, Summer 2018

Dealing With Memory Bugs (cont.)

+» Some mal loc implementations contain checking
code

® Linux glibc malloc: setenv MALLOC CHECK 2
®= FreeBSD: setenv MALLOC OPTIONS AJR

% Binary translator: valgrind (Linux), Purify
= Powerful debugging and analysis technique
= Rewrites text section of executable object file
" Can detect all errors as debugging mal loc

" Can also check each individual reference at runtime
- Bad pointers
- Overwriting

- Referencing outside of allocated block

33

w UNIVERSITY of WASHINGTON L22: Memory Allocation Il CSE351, Summer 2018

What about Java or ML or Python or ...?

+» In memory-safe languages, most of these bugs are

L)

impossible

= Cannot perform arbitrary pointer manipulation
= Cannot get around the type system

= Array bounds checking, null pointer checking

= Automatic memory management

But one of the bugs we saw earlier is possible. Which
one?

34

w UNIVERSITY of WASHINGTON L22: Memory Allocation IlI CSE351, Summer 2018

Memory Leaks with GC

. Not because of forgotten free — we have GC!
» Unneeded “leftover” roots keep objects reachable
» Sometimes nullifying a variable is not needed for correctness

but is for performance Free (p);
, : p = MULL; , cp
» Example: Don’t leave big data structures you’re done with in a

static field

Root nodes Q Q Q

Heap nodes O reachable
O not reachable

(garbage)

O

35

