
CSE351, Summer 2018L12: Arrays, Structs

Arrays and Structs
CSE 351 Summer 2018

Instructor:
Justin Hsia

Teaching Assistants:
Josie Lee
Natalie Andreeva
Teagan Horkan

http://xkcd.com/1270/

CSE351, Summer 2018L12: Arrays, Structs

Administrivia
 Lab 2 due tonight
 Homework 3 due next Monday (7/23)

 Midterm (Wednesday in lecture)
 60-minute exam
 Midterm details Piazza post: @58
 Review session: 5:00-6:30pm tonight in EEB 045

• Take a look at midterm review packet

 Some lecture material covered in Section on Thursday
 Lab 3 released on Thursday (7/19)

2

CSE351, Summer 2018L12: Arrays, Structs

Data Structures in Assembly
 Arrays
 One-dimensional
 Multi-dimensional (nested)
 Multi-level

 Structs
 Alignment

 Unions

3

CSE351, Summer 2018L12: Arrays, Structs

zip_dig sea[4] =
{{ 9, 8, 1, 9, 5 },
{ 9, 8, 1, 0, 5 },
{ 9, 8, 1, 0, 3 },
{ 9, 8, 1, 1, 5 }};

Nested Array Example

4

Remember, T A[N] is
an array with elements
of type T, with length N

What is the layout in memory?same as:
int sea[4][5];

typedef int zip_dig[5];

CSE351, Summer 2018L12: Arrays, Structs

Nested Array Example

 “Row-major” ordering of all elements
 Elements in the same row are contiguous
 Guaranteed (in C)

5

76 96 116 136 156

9 8 1 9 5 9 8 1 0 5 9 8 1 0 3 9 8 1 1 5

sea[3][2];

Row 0 Row 1 Row 2 Row 3

typedef int zip_dig[5];

zip_dig sea[4] =
{{ 9, 8, 1, 9, 5 },
{ 9, 8, 1, 0, 5 },
{ 9, 8, 1, 0, 3 },
{ 9, 8, 1, 1, 5 }};

Remember, T A[N] is
an array with elements
of type T, with length N

CSE351, Summer 2018L12: Arrays, Structs

Two-Dimensional (Nested) Arrays
 Declaration: T A[R][C];
 2D array of data type T
 R rows, C columns
 Each element requires
sizeof(T) bytes

 Array size?

6

A[0][0] A[0][C-1]

A[R-1][0]

• • •

• • • A[R-1][C-1]

•
•
•

•
•
•

CSE351, Summer 2018L12: Arrays, Structs

Two-Dimensional (Nested) Arrays
 Declaration: T A[R][C];
 2D array of data type T
 R rows, C columns
 Each element requires
sizeof(T) bytes

 Array size:
 R*C*sizeof(T) bytes

 Arrangement: row-major ordering

7

int A[R][C];

• • •
A

[0]
[0]

A
[0]

[C-1]
• • •

A
[1]
[0]

A
[1]

[C-1]
• • •

A
[R-1]
[0]

A
[R-1]
[C-1]

• • •

4*R*C bytes

A[0][0] A[0][C-1]

A[R-1][0]

• • •

• • • A[R-1][C-1]

•
•
•

•
•
•

CSE351, Summer 2018L12: Arrays, Structs

Nested Array Row Access
 Row vectors
 Given T A[R][C],

• A[i] is an array of C elements (“row i”)
• A is address of array
• Starting address of row i =

8

• • •• • •
A

[i]
[0]

A
[i]

[C-1]

A[i]

• • •
A

[R-1]
[0]

A
[R-1]
[C-1]

A[R-1]

• • •

A

• • •
A

[0]
[0]

A
[0]

[C-1]

A[0]

A+i*C*4 A+(R-1)*C*4

int A[R][C];

A + i*(C * sizeof(T))

CSE351, Summer 2018L12: Arrays, Structs

Nested Array Row Access Code

9

int* get_sea_zip(int index)
{
return sea[index];

}

int sea[4][5] =
{{ 9, 8, 1, 9, 5 },
{ 9, 8, 1, 0, 5 },
{ 9, 8, 1, 0, 3 },
{ 9, 8, 1, 1, 5 }};

get_sea_zip(int):
movslq %edi, %rdi
leaq (%rdi,%rdi,4), %rax
leaq sea(,%rax,4), %rax
ret

sea:
.long 9
.long 8
.long 1
.long 9
.long 5
.long 9
.long 8

...

CSE351, Summer 2018L12: Arrays, Structs

Nested Array Row Access Code

10

%rdi = index
leaq (%rdi,%rdi,4),%rax # 5 * index
leaq sea(,%rax,4),%rax # sea + (20 * index)

Translation?

int* get_sea_zip(int index)
{
return sea[index];

}

int sea[4][5] =
{{ 9, 8, 1, 9, 5 },
{ 9, 8, 1, 0, 5 },
{ 9, 8, 1, 0, 3 },
{ 9, 8, 1, 1, 5 }};

 What data type is sea[index]?
 What is its value?

CSE351, Summer 2018L12: Arrays, Structs

Nested Array Row Access Code

 Row Vector
 sea[index] is array of 5 ints
 Starting address = sea+20*index

 Assembly Code
 Computes and returns address
 Compute as: sea+4*(index+4*index)= sea+20*index

11

int* get_sea_zip(int index)
{
return sea[index];

}

int sea[4][5] =
{{ 9, 8, 1, 9, 5 },
{ 9, 8, 1, 0, 5 },
{ 9, 8, 1, 0, 3 },
{ 9, 8, 1, 1, 5 }};

%rdi = index
leaq (%rdi,%rdi,4),%rax # 5 * index
leaq sea(,%rax,4),%rax # sea + (20 * index)

CSE351, Summer 2018L12: Arrays, Structs

• • •• • • • • •
A

[i]
[j]

A[i]

• • •
A

[R-1]
[0]

A
[R-1]
[C-1]

A[R-1]

• • •

A

• • •
A

[0]
[0]

A
[0]

[C-1]

A[0]

A + i*C*4 A + (R-1)*C*4

int A[R][C];

Nested Array Element Access
 Array Elements
 A[i][j] is element of type T, which requires K bytes
 Address of A[i][j] is

12
?

CSE351, Summer 2018L12: Arrays, Structs

Nested Array Element Access
 Array Elements
 A[i][j] is element of type T, which requires K bytes
 Address of A[i][j] is

A + i*(C*K) + j*K == A + (i*C + j)*K

13
A + i*C*4 + j*4

• • •• • • • • •
A

[i]
[j]

A[i]

• • •
A

[R-1]
[0]

A
[R-1]
[C-1]

A[R-1]

• • •

A

• • •
A

[0]
[0]

A
[0]

[C-1]

A[0]

A + i*C*4 A + (R-1)*C*4

int A[R][C];

CSE351, Summer 2018L12: Arrays, Structs

Nested Array Element Access Code

 Array Elements
 sea[index][digit] is an int (sizeof(int)=4)
 Address = sea + 5*4*index + 4*digit

 Assembly Code
 Computes address as: sea + ((index+4*index) + digit)*4
 movl performs memory reference

14

leaq (%rdi,%rdi,4), %rax # 5*index
addl %rax, %rsi # 5*index+digit
movl sea(,%rsi,4), %eax # *(sea + 4*(5*index+digit))

int get_sea_digit
(int index, int digit)

{
return sea[index][digit];

}

int sea[4][5] =
{{ 9, 8, 1, 9, 5 },
{ 9, 8, 1, 0, 5 },
{ 9, 8, 1, 0, 3 },
{ 9, 8, 1, 1, 5 }};

CSE351, Summer 2018L12: Arrays, Structs

Strange Referencing Examples

Reference Address Value Guaranteed?
sea[3][3]
sea[2][5]
sea[2][-1]
sea[4][-1]
sea[0][19]
sea[0][-1]

 Code does not do any bounds checking
 Ordering of elements within array guaranteed

15

zip_dig sea[4];

76 96 116 136 156

9 8 1 9 5 9 8 1 0 5 9 8 1 0 3 9 8 1 1 5

typedef int zip_dig[5];

CSE351, Summer 2018L12: Arrays, Structs

Data Structures in Assembly
 Arrays
 One-dimensional
 Multi-dimensional (nested)
 Multi-level

 Structs
 Alignment

 Unions

16

CSE351, Summer 2018L12: Arrays, Structs

Multi-Level Array Example

17

int cmu[5] = { 1, 5, 2, 1, 3 };
int uw[5] = { 9, 8, 1, 9, 5 };
int ucb[5] = { 9, 4, 7, 2, 0 };

int* univ[3] = {uw, cmu, ucb};

Is a multi-level array the
same thing as a 2D array?

zip_dig univ2D[3] = {
{ 9, 8, 1, 9, 5 },
{ 1, 5, 2, 1, 3 },
{ 9, 4, 7, 2, 0 }

};

One array declaration = one contiguous block of memory

NO2D Array Declaration:

Multi-Level Array Declaration(s):

CSE351, Summer 2018L12: Arrays, Structs

Multi-Level Array Example

18

 Variable univ denotes array
of 3 elements

 Each element is a pointer
 8 bytes each

 Each pointer points to array
of ints

36160

16

60

168

176

univ

cmu

uw

ucb

1 5 2 1 3

16 20 24 28 32 36
9 8 1 9 5

36 40 44 48 52 56

9 4 7 2 0

60 64 68 72 76 80

Note: this is how Java represents multi-dimensional arrays

int* univ[3] = {uw, cmu, ucb};

int cmu[5] = { 1, 5, 2, 1, 3 };
int uw[5] = { 9, 8, 1, 9, 5 };
int ucb[5] = { 9, 4, 7, 2, 0 };

CSE351, Summer 2018L12: Arrays, Structs

Element Access in Multi-Level Array

19

 Computation
 Element access Mem[Mem[univ+8*index]+4*digit]
 Must do two memory reads

• First get pointer to row array
• Then access element within array

 But allows inner arrays to be different lengths (not seen here)

salq $2, %rsi # rsi = 4*digit
addq univ(,%rdi,8), %rsi # p = univ[index] + 4*digit
movl (%rsi), %eax # return *p
ret

int get_univ_digit
(int index, int digit)

{
return univ[index][digit];

}

36160

16

60

168

176

univ

cmu

uw

ucb

1 5 2 1 3

16 20 24 28 32 36

9 8 1 9 5

36 40 44 48 52 56

9 4 7 2 0

60 64 68 72 76 80

CSE351, Summer 2018L12: Arrays, Structs

Array Element Accesses

20

int get_sea_digit
(int index, int digit)

{
return sea[index][digit];

}

int get_univ_digit
(int index, int digit)

{
return univ[index][digit];

}

Nested array Multi‐level array

Access looks the same, but it isn’t:

Mem[sea+20*index+4*digit] Mem[Mem[univ+8*index]+4*digit]

36160

16

60

168

176

univ

cmu

uw

ucb

1 5 2 1 3

16 20 24 28 32 36

9 8 1 9 5

36 40 44 48 52 56

9 4 7 2 0

60 64 68 72 76 80

CSE351, Summer 2018L12: Arrays, Structs

Strange Referencing Examples

Reference Address Value Guaranteed?
univ[2][3]
univ[1][5]
univ[2][-2]
univ[3][-1]

univ[1][12]
 C code does not do any bounds checking
 Location of each lower-level array in memory is not guaranteed

21

36160

16

60

168

176

univ

cmu

uw

ucb

1 5 2 1 3

16 20 24 28 32 36
9 8 1 9 5

36 40 44 48 52 56

9 4 7 2 0

60 64 68 72 76 80

CSE351, Summer 2018L12: Arrays, Structs

Peer Instruction Question
 Which of the following statements is FALSE?
 Vote at http://PollEv.com/justinh

A. sea[4][-2] is a valid array reference
B. sea[1][1] makes two memory accesses
C. sea[2][1] will always be a higher address

than sea[1][2]
D. sea[2] is calculated using only lea
E. We’re lost…

22

int sea[4][5];

76 96 116 136 156

9 8 1 9 5 9 8 1 0 5 9 8 1 0 3 9 8 1 1 5

CSE351, Summer 2018L12: Arrays, Structs

Data Structures in Assembly
 Arrays
 One-dimensional
 Multi-dimensional (nested)
 Multi-level

 Structs
 Alignment

 Unions

23

CSE351, Summer 2018L12: Arrays, Structs

Structs in C

typedef struct {
int lengthInSeconds;
int yearRecorded;

} Song;

Song song1;

song1.lengthInSeconds = 213;
song1.yearRecorded = 1994;

Song song2;

song2.lengthInSeconds = 248;
song2.yearRecorded = 1988;

24

 Way of defining compound data types
 A structured group of variables, possibly including other structs

CSE351, Summer 2018L12: Arrays, Structs

Struct Definitions
 Structure definition:
 Does NOT declare a variable
 Variable type is “struct name”

 Joint struct definition and typedef
 Don’t need to give struct a name in this case

struct name {
/* fields */

};

typedef struct {
/* fields */

} name;
name n1;

struct name name1, *pn, name_ar[3];

struct nm {
/* fields */

};
typedef struct nm name;
name n1;

pointer

array

Easy to forget
semicolon!

25

CSE351, Summer 2018L12: Arrays, Structs

Scope of Struct Definition
 Why is placement of struct definition important?
 What actually happens when you declare a variable?

• Creating space for it somewhere!
 Without definition, program doesn’t know how much space

 Almost always define structs in global scope near the
top of your C file
 Struct definitions follow normal rules of scope

26

struct data {
int ar[4];
long d;

};

Size = _____ bytes struct rec {
int a[4];
long i;
struct rec* next;

};Size = _____ bytes

CSE351, Summer 2018L12: Arrays, Structs

Accessing Structure Members
 Given a struct instance, access

member using the . operator:
struct rec r1;
r1.i = val;

 Given a pointer to a struct:
struct rec *r;
r = &r1; // or malloc space for r to point to

We have two options:
• Use * and . operators: (*r).i = val;
• Use -> operator for short: r->i = val;

 In assembly: register holds address of the first byte
 Access members with offsets

27

struct rec {
int a[4];
long i;
struct rec *next;

};

CSE351, Summer 2018L12: Arrays, Structs

Structure Representation

 Characteristics
 Contiguously-allocated region of memory
 Refer to members within structure by names
 Members may be of different types

28

a

r

i next

0 16 24 32

struct rec {
int a[4];
long i;
struct rec *next;

} *r;

CSE351, Summer 2018L12: Arrays, Structs

Structure Representation

 Structure represented as block of memory
 Big enough to hold all of the fields

 Fields ordered according to declaration order
 Even if another ordering would be more compact

 Compiler determines overall size + positions of fields
 Machine-level program has no understanding of the structures

in the source code

29

struct rec {
int a[4];
long i;
struct rec *next;

} *r;
a

r

i next

0 16 24 32

CSE351, Summer 2018L12: Arrays, Structs

r in %rdi, index in %rsi
movq 16(%rdi), %rax
ret

long get_i(struct rec *r)
{
return r->i;

}

Accessing a Structure Member

 Compiler knows the
offset of each member
within a struct
 Compute as
*(r+offset)
• Referring to absolute

offset, so no pointer
arithmetic

30

r->i

a

r

i next

0 16 24 32

struct rec {
int a[4];
long i;
struct rec *next;

} *r;

CSE351, Summer 2018L12: Arrays, Structs

r in %rdi

__ ,%rax

ret

Pointer to Structure Member

31

r in %rdi

__ ,%rax

ret

long* addr_of_i(struct rec *r)
{

return &(r->i);
}

struct rec** addr_of_next(struct rec *r)
{

return &(r->next);
}

struct rec {
int a[4];
long i;
struct rec *next;

} *r;
a

r

i next

0 16 24 32

CSE351, Summer 2018L12: Arrays, Structs

Review: Memory Alignment in x86-64
 For good memory system performance, Intel

recommends data be aligned
 However the x86-64 hardware will work correctly regardless of

alignment of data
 Aligned means that any primitive object of bytes

must have an address that is a multiple of
 Aligned addresses for data types:

32

𝐾 Type Addresses

1 char No restrictions

2 short Lowest bit must be zero: …02
4 int, float Lowest 2 bits zero: …002
8 long, double, * Lowest 3 bits zero: …0002
16 long double Lowest 4 bits zero: …00002

CSE351, Summer 2018L12: Arrays, Structs

Alignment Principles
 Aligned Data
 Primitive data type requires 𝐾 bytes
 Address must be multiple of 𝐾
 Required on some machines; advised on x86-64

 Motivation for Aligning Data
 Memory accessed by (aligned) chunks of 4 or 8 bytes

(system dependent)
• Inefficient to load or store value that spans quad word boundaries
• Virtual memory trickier when value spans 2 pages (more on this

later)

33

CSE351, Summer 2018L12: Arrays, Structs

Structures & Alignment
 Unaligned Data

 Aligned Data
 Primitive data type requires 𝐾 bytes
 Address must be multiple of 𝐾

34

c i[0] i[1] v

p p+1 p+5 p+9 p+17

internal fragmentation

struct S1 {
char c;
int i[2];
double v;

} *p;

c i[0] i[1] v3 bytes 4 bytes
p+0 p+4 p+8 p+16 p+24

Multiple of 4 Multiple of 8
Multiple of 8 Multiple of 8

CSE351, Summer 2018L12: Arrays, Structs

Satisfying Struct Alignment (1)
 Within structure:
 Must satisfy each element’s alignment requirement

 Overall structure placement
 Each structure has alignment requirement 𝐾୫ୟ୶

• 𝐾୫ୟ୶ = Largest alignment of any element
• Counts array elements individually as elements

 Example:
 𝐾୫ୟ୶ = 8, due to double element

35

struct S1 {
char c;
int i[2];
double v;

} *p;

c i[0] i[1] v3 bytes 4 bytes
p+0 p+4 p+8 p+16 p+24

Multiple of 4 Multiple of 8
Multiple of 8 Multiple of 8internal fragmentation

CSE351, Summer 2018L12: Arrays, Structs

Satisfying Struct Alignment (2)
 Can find offset of individual fields

using offsetof()
 Need to #include <stddef.h>
 Example: offsetof(struct S2,c) returns 16

 For largest alignment requirement ୫ୟ୶,
overall structure size must be multiple of ୫ୟ୶
 Compiler will add padding at end of

structure to meet overall structure
alignment requirement

36

v i[0] i[1] c 7 bytes
p+0 p+8 p+16 p+24

external fragmentation

struct S2 {
double v;
int i[2];
char c;

} *p;

Multiple of 8

CSE351, Summer 2018L12: Arrays, Structs

Arrays of Structures
 Overall structure length multiple of ௫

 Satisfy alignment requirement
for every element in array

37

a[0] a[1] a[2] • • •

a+0 a+24 a+48 a+72

struct S2 {
double v;
int i[2];
char c;

} a[10];

v i[0] i[1] c 7 bytes
a+24 a+32 a+40 a+48

external fragmentation

CSE351, Summer 2018L12: Arrays, Structs

Alignment of Structs
 Compiler will do the following:
 Maintains declared ordering of fields in struct
 Each field must be aligned within the struct

(may insert padding)
• offsetof can be used to get actual field offset

 Overall struct must be aligned according to largest field
 Total struct size must be multiple of its alignment

(may insert padding)
• sizeof should be used to get true size of structs

38

CSE351, Summer 2018L12: Arrays, Structs

How the Programmer Can Save Space
 Compiler must respect order elements are declared in
 Sometimes the programmer can save space by declaring large

data types first

39

struct S4 {
char c;
int i;
char d;

} *p;

struct S5 {
int i;
char c;
char d;

} *p;

c i3 bytes d 3 bytes ci d 2 bytes

12 bytes 8 bytes

CSE351, Summer 2018L12: Arrays, Structs

Peer Instruction Question
 Minimize the size of the struct by re-ordering the vars

 What are the old and new sizes of the struct?
sizeof(struct old) = _____ sizeof(struct new) = _____

A. 16 bytes
B. 22 bytes
C. 28 bytes
D. 32 bytes
E. We’re lost…

40

struct old {
int i;

short s[3];

char *c;

float f;
};

struct new {
int i;

______ ______;

______ ______;

______ ______;
};

Vote on sizeof(struct old):
http://PollEv.com/justinh

CSE351, Summer 2018L12: Arrays, Structs

Summary
 Arrays are contiguous allocations of memory
 No bounds checking (and no default initialization)

 int a[4][5]; array of arrays
 all levels in one contiguous block of memory

 int* b[4]; array of pointers to arrays
 First level in one contiguous block of memory
 Each element in the first level points to another “sub” array
 Parts anywhere in memory

 Structures
 Allocate bytes in order declared
 Pad in middle and at end to satisfy alignment

41

