w UNIVERSITY of WASHINGTON L12: Arrays, Structs CSE351, Summer 2018

Arrays and Structs

CSE 351 Summer 2018

Instructor:
Justin Hsia

Teaching Assistants:
Josie Lee

Natalie Andreeva
Teagan Horkan

WHY DO YOU LIKE FUNCTIONAL
PROGRAMMING S0 MUCH? WHAT
DOES IT ACTUALLY GE7 YOU?

TAIL RECURSION 1S
ITS5 OWN REWARD.

L

http://xkcd.com/1270/




W UNIVERSITY of WASHINGTON L12: Arrays, Structs CSE351, Summer 2018

Administrivia

» Lab 2 due tonight
» Homework 3 due next Monday (7/23)

» Midterm (Wednesday in lecture)
= 60-minute exam
= Midterm details Piazza post: ©58

= Review session: 5:00-6:30pm tonight in EEB 045
- Take a look at midterm review packet

+» Some lecture material covered in Section on Thursday
» Lab 3 released on Thursday (7/19)



w UNIVERSITY of WASHINGTON L12: Arrays, Structs CSE351, Summer 2018

Data Structures in Assembly

+» Arrays
= One-dimensional
" Multi-dimensional (nested)

= Multi-level

+ Structs
= Alignment



W UNIVERSITY of WASHINGTON L12: Arrays, Structs CSE351, Summer 2018

typedef Int zip dig[5];

Nested Array Example

[zip_dig sea[4]] = Remember, T A[N] is
{9 8,1, 9, 51}, an array with elements
» 8,1, 0, 5}, of type T, with length N

, 8,1, 0, 31},

, 8, 1, 1, 5 }};

— [
© © ©

_ What is the layout in memory?
same as:

iInt seal[4][5];



CSE351, Summer 2018

WA/ UNIVERSITY of WASHINGTON L12: Arrays, Structs

typedef Int zip dig[5];

Nested Array Example

zip _dig sea[4] = Remember, T A[N] is
{9 8,1, 9, 51}, an array with elements
19,.8,1,0, 5}, of type T, with length N
{ 9, 81 11 01 3 }’
{9, 8, 1, 1, 5 }}; sea[3][2]:
Row 0 Row 1 Row 2 Ro% 3
9(8{1/9(519|8(1({0|519(8|1|0(3|9|8|1(1|5
76 96 116 136 156

+» "Row-major” ordering of all elements
+» Elements in the same row are contiguous
» Guaranteed (in C)




W UNIVERSITY of WASHINGTON L12: Arrays, Structs

Two-Dimensional (Nested) Arrays

» Declaration: T A[R][C];
= 2D array of data type T
= R rows, C columns
= Fach element requires
si1zeof(T) bytes

+» Array size?

ALO1[O] <= - = A[O]JIC-1]

A[R-1][0] = = = A[R-1][C-1]

CSE351, Summer

2018



WA/ UNIVERSITY of WASHINGTON

Two-Dimensional (Nested) Arrays

» Declaration: T A[R][C];

= 2D array of data type T
" R rows, C columns

= Fach element requires
si1zeof(T) bytes

+» Array size:

= R*C*si1zeof(T) bytes

L12: Arrays, Structs

ALO]LO]

A[O1[C-1]

A[R-1][0] = = = A[R-1][C-1]

+» Arrangement: row-major ordering

int A[R][C]:

A
[O]
[O]

A
[O]
[C-1]

[1]
[O]

A
[1]
[C-1]

[R-1]
[O]

[R-1]
[C-1]

4*R*C bytes

CSE351, Summer 2018




w UNIVERSITY of WASHINGTON L12: Arrays, Structs CSE351, Summer 2018

Nested Array Row Access

+» Row vectors
= Given T A[R][C],
- A[ 1] is an array of C elements (“row 1")

- AiIs address of array
- Starting address of row 1 = A + 1*(C * sizeof(T))

int A[R][C];

A[O] > < A[1] > < A[R-1]
A A A A A A
[O] | = == |[O] [0 @ @ |[i] | === |[1]|e® o ef[R-1] = = = [[R-1]
[0] [C-1] [0] [C-1] [0] [C-1]

A A+i*C*4 A+(R-1)*C*4



WA/ UNIVERSITY of WASHINGTON

L12: Arrays, Structs

Nested Array Row Access Code

CSE351, Summer 2018

InNt* get_sea zip(int Index)

{

return sealindex];

}

int
{

o P P

S

© © © O 0D

a[4][5]

CcO 00 00 OO

PR PR

R OO O Il

U1 W U1 Ul
e

el

movsiq
leaq
leaq
ret

sea:
. long
. long
. long
- long
- long
- long
- long

(get_sea_zip(int):

Y%edr, %rdi
(%rdi,%rdi,4), %rax
sea(,%rax,4), %rax

0 ©UlOPF 0O




CSE351, Summer 2018

L12: Arrays, Structs

WA UNIVERSITY of WASHINGTON

Nested Array Row Access Code

InNt* get_sea zip(int Index)

{

return sealindex];

}

= What data type is sea] 1ndex]?
=  What is its value?

int sea[4][5]

R OO O Il

U1 W U1 Ul
e

el

# %rdir = 1ndex
leaqg (%rdi,%rdi,4),%rax
leag sea(,%rax,4) ,%rax

Translation?

10



CSE351, Summer 2018

WA UNIVERSITY of WASHINGTON

L12: Arrays, Structs

Nested Array Row Access Code

o1 W 01 O1
o o o
el

INt* get _sea zip(int iIndex) nt sea[4][5] =
{ {{9,8 1, 9
return seal[index]; {9, 8, 1, 0
¥ {9,8,1,0
{9, 8, 1, 1

# %rdir = 1ndex

leaqg (%rdir,%rdi,4),%rax # 5 * Index
leaqg sea(,%rax,4),%rax

# sea + (20 * 1ndex)

+ Row Vector
= sealindex] is array of 5 Ints
= Starting address = sea+20*1ndex

+ Assembly Code

= Computes and returns address
" Compute as: seat+4*(1ndex+4*i1ndex)= sea+20*i1ndex

11



w UNIVERSITY of WASHINGTON L12: Arrays, Structs CSE351, Summer 2018

Nested Array Element Access

+ Array Elements
= A[1][}] is element of type T, which requires K bytes
= Address of A[1][3]1 Is

int A[R][C]:

.  A[0] ——. ALl —— A[R-1]—.,
A A A A A
[0] | = == |[[0]| o o 0 |= = <|[i]]===|0e o ofr-1]| = = = [R-1]
[O] [C-1] 1l [0] [C-1]

A A + i*C*4 \ A + (R-1)*C*4

12



w UNIVERSITY of WASHINGTON L12: Arrays, Structs CSE351, Summer 2018

Nested Array Element Access

+ Array Elements
= A[1][}] is element of type T, which requires K bytes

= Address of A[1][3]1 Is
A+ 1*(C*K) + J*K == A + (1*C + J)*K

int A[R]1[C];

. A[0] —  A[I] — . A[R-1]—.
A A A A A
[0] | === |[0]]|o® © ¢ |= = <|[i]|==<|0 o of[R-1] = = = |[[R-1]
[O] [C-1] 1l [0] [C-1]

A A + 1*C*4 A + (R-1)*C*4

A + i*C*4 + j*4

13



WA/ UNIVERSITY of WASHINGTON

L12: Arrays, Structs

CSE351, Summer 2018

Nested Array Element Access Code

Int get _sea digit int sea[4][5] =
(int 1ndex, Int digit) {{ 9, 8, 1, 9, 5},
{ {9, 8,1, 0, 5},
return seaf[index][digit]; {9, 8, 1, 0, 3 },
+ {9, 8,1, 1, 5}};
leag (%rdi,%rdi,4), %rax # 5*index
addl %rax, %rsi # 5*i1ndex+digit
movl sea(,%rsi,4), %eax # *(sea + 4*(5*iIndex+digit))

+» Array Elements

= seal[index][digit] is an Int

+» Assembly Code

= Computes address as:

(sizeof(int)=4)
" Address = sea + 5*4*iIndex + 4*digit

sea + ((Index+4*i1index) + digit)*4
= movl performs memory reference

14



w UNIVERSITY of WASHINGTON L12: Arrays, Structs CSE351, Summer 2018

typedef 1nt zip dig[5];
Strange Referencing Examples

zip dig sea[4]; |9|8|1|9|5|9|8|1|0|5|9|8|1|0|3|9|8|1|1|5

76 96 116 136 156
Reference Address Value Guaranteed?
sea[3][3]

sea[2][5]

sea[2][-1]

sea[4][-1]

sea[0][19]

sea[O][-1]

m Code does not do any bounds checking

m Ordering of elements within array guaranteed

15



w UNIVERSITY of WASHINGTON L12: Arrays, Structs CSE351, Summer 2018

Data Structures in Assembly

+» Arrays
" One-dimensional

" Multi-dimensional (nested)
= Multi-level

+ Structs
= Alignment

16



W UNIVERSITY of WASHINGTON L12: Arrays, Structs

CSE351, Summer 2018

Multi-Level Array Example

Multi-Level Array Declaration(s):

int cnuf5] = {1, 5, 2, 1, 3 }
int uw[5] = {9, 8, 1, 9, 5 };
int ucb[5] = {9, 4, 7, 2, 0 };
int* univ[3] = {uw, cmu, ucb};

2D Array Declaration:

zip _dig univ2D[3]
9, 5
1, 3
9, 0)

nadeadadlil

p_
{9,8,1, 09,
{ 5, 2, 1,
£9, 4,7, 2,

¥

{

Is a multi-level array the
same thing as a 2D array? NO

One array declaration = one contiguous block of memory



WA/ UNIVERSITY of WASHINGTON

L12: Arrays, Structs CSE351, Summer 2018

Multi-Level Array Example

int cmu[5] = { 1, 5, 2, 1, 3 }; Variable univ denotes array
int uwf5] = {9, 8, 1,9, 5}; of 3 elements
JmE WEa]l = o & 4o 7o 20 U 4 Each element I1s a pointer
int* univ[3] = {uw, cmu, ucb}; " 8 bytes each
Each pointer points to array
of Ints
2 | 1 | 3
24 28 32 36
160 —
1 9 5
168 —
176 44 48 52 56
/ 2 0
60 64 68 72 76 80

Note: this i1s how Java represents multi-dimensional arrays

18



W UNIVERSITY of WASHINGTON L12: Arrays, Structs CSE351, Summer 2018

Element Access in Multi-Level Array

cmu

Iint get_univ_digit . ////) T [ s [ 2 [ 1 [ 3
(int Index, Int digit) 160 o so@) w0 M ¥ ® %
~_ _w), 9 8 1 9 5
168 — 16¢ 1 1

ucbh 36 40 44 48 52 56

~__ v o 4 7 2 0

60 64 68 72 76 80

return univ[index][digit]; | " 1*&

salq $2, %rsi #
addq univ(,%rdi,8), %rsi # p
movl (%rsi1), %eax #r
ret

ﬁ

si1 = 4*digit
= univ[index] + 4*digit
eturn *p

+» Computation

" Element access Mem[Mem|[univ+8*index]|+4*digit]
" Must do two memory reads

- First get pointer to row array
- Then access element within array

= But allows inner arrays to be different lengths (not seen here) 1o



w UNIVERSITY of WASHINGTON L12: Arrays, Structs CSE351, Summer 2018

Array Element Accesses

Nested array Multi-level array
INt get _sea digit int get univ_digit
(int 1ndex, iInt digit) (int 1ndex, Int digit)
{ {
return seafindex][digit]; return univ[index][digit];
+ }
) o 1 5 2 1 3
9/8|1|9|5|9|8|1|({0|5|9|8[1|/0|3|9|8|1|1(5 i /16 20 24 28 32 36
160 — 36.*& 9 8 1 9 5
76 96 116 136 156 ijz :: :(6)./ uch 36 4[) 14 4r3 12 5T6
.\\_/y 9 4 7 2 0
60 64 68 72 76 80

Access looks the same, but It isn't:

Mem[sea+20*1ndex+4*digit] Mem[Mem[univ+8*1ndex]+4*digit]

20



w UNIVERSITY of WASHINGTON L12: Arrays, Structs CSE351, Summer 2018

Strange Referencing Examples

chu

} 1 * 5 * 2 * 1 * 3
160 16 20 24 28 32 36
* 9 } 8 } 1 } 9 } 5
168 — 1
176 \ uch 36 40 44 48 52 56
9 7 4 7 7 7 2 7 O y 8

univ

uw

60 64 68 72 76 80
Reference Address Value Guaranteed?
univ|[2][3]
univ[1l][5]

univ[2][-2]
univ[3][-1]
univl][12]
= C code does not do any bounds checking

= | ocation of each lower-level array in memory is not guaranteed
21



YA UNIVERSITY of WASHINGTON CSE351, Summer 2018

Peer Instruction Question

+» Which of the following statements is FALSE?
= \/ote at http://PollEv.com/justinh

int sea[4]1[5]; |9|8|1|9|5|9|8|1|0|5|9|8|1|0|3]|9|8|1|1|5

76 96 116 136 156

A.

B. sea[l][1] makes two memory accesses

C. sea[2]]1] will always be a higher address
than sea[1]]2]

D. seal?2] is calculated using only lea
E. We're lost...

22



w UNIVERSITY of WASHINGTON L12: Arrays, Structs CSE351, Summer 2018

Data Structures in Assembly

% Arrays
= One-dimensional
" Multi-dimensional (nested)
= Multi-level

» Structs
= Alignment

23



W UNIVERSITY of WASHINGTON

Structs in C

L12: Arrays, Structs

+» Way of defining compound data types

+ A structured group of variables, possibly including other structs

typedef struct {
int lengthlnSeconds;
Int yearRecorded;

+ Song;
Song songl;

songl. lengthlnSeconds
songl.yearRecorded

Song song2;

song2. lengthlnSeconds
song2.yearRecorded

213;
1994 ;

248;
1988;

CSE351, Summer 2018

typedef struct {

int lengthInSeconds;
int yvearRecorded;

} Song;

rsungl

lengthInSeconds: 213
vearRecorded: 1994

rsungE

lengthInSeconds: 248
yvearRecorded: 1988

24



W UNIVERSITY of WASHINGTON L12: Arrays, Structs CSE351, Summer 2018

Struct Definitions

«» Structure definition:
struct name {

= Does NOT declare a variable /> Fields */
= Variable type is “struct name” }—

- pointer —— Easy to forget
V< i |
struct name namel, *pn, name_ar[3]; semicolon!
A 3

N~

array

% Joint struct definition and typedef
= Don't need to give struct a name In this case

struct nm { typedef struct {
/* Tfields */ /* fields */

3 ‘ 1} name;

typedef struct nm name; name nl;

name nl;

25



w UNIVERSITY of WASHINGTON L12: Arrays, Structs CSE351, Summer 2018

Scope of Struct Definition

+» Why Is placement of struct definition important?

= What actually happens when you declare a variable?
- Creating space for it somewhere!

= Without definition, program doesn't know how much space

struct data { |<— Size= bytes | struct rec {
int ar[4]; int aj4];
long d; long 1;
} struct rec* next;
Size = bytes—— | };

+» Almost always define structs in global scope near the
top of your C file

= Struct definitions follow normal rules of scope

26



w UNIVERSITY of WASHINGTON L12: Arrays, Structs CSE351, Summer 2018

Accessing Structure Members

4

. (Glven a struct instance, access

member using the . operator: |struct rec {

struct rec ri; Int a[4];

1§ = I- long 1;
rt.r = vat, struct rec *next;

D)

L)

<&

+ Given a pointer to a struct: }:
struct rec *r;
r = &rl; // or malloc space for r to point to

We have two options:
- Use * and . operators: C'r).1 = val;
- Use -> operator for short: r->1 = val;

D)

L)

» In assembly: register holds address of the first byte

" Access members with offsets

27



W UNIVERSITY of WASHINGTON L12: Arrays, Structs

Structure Representation

CSE351, Summer 2018

+» Characteristics

= Contiguously-allocated region of memory
= Refer to members within structure by names
= Members may be of different types

struct rec { r

int aj4];

long 1;

struct rec *next; a i next
LSS 0 16 24 32

28



CSE351, Summer 2018

W UNIVERSITY of WASHINGTON L12: Arrays, Structs

Structure Representation

struct rec { r

int aj4];

long 1;

struct rec *next; a i next
LS 0 16 24 32

+» Structure represented as block of memory
= Big enough to hold all of the fields
+ Fields ordered according to declaration order

= Even If another ordering would be more compact

+» Compiler determines overall size + positions of fields

= Machine-level program has no understanding of the structures
In the source code

29



w UNIVERSITY of WASHINGTON L12: Arrays, Structs CSE351, Summer 2018

Accessing a Structure Member

struct rec { r r—>i
int af[4];
long 1;
struct rec *next; a i next
y T 0 16 24 32
+» Compiler knows the long get_i(struct rec *r)
{
offsef of each member T
within a struct }
= Compute as
x
(r+0ffset) # r 1In %rdi, index In %rsi
- Referring to absolute movqg 16(%rdi), %rax
offset, so no pointer ret

arithmetic

30



w UNIVERSITY of WASHINGTON L12: Arrays, Structs CSE351, Summer 2018

Pointer to Structure Member

struct rec { r
int aj4];
long 1; v
struct rec *next; a i next
L
0 16 24 32
long* addr_of i(struct rec *r) # r 1n %rdi
{ 0
return &(r->i); —_— — ) FED
1 ret
struct rec** addr_of next(struct rec *r) # r 1n %rdi
{ 0
return &(r->next); —_— — ) FED
1 ret

31



W UNIVERSITY of WASHINGTON L12: Arrays, Structs CSE351, Summer 2018

Review: Memory Alignment in x86-64

+» For good memory system performance, Intel
recommends data be aligned
= However the x86-64 hardware will work correctly regardless of
alignment of data
+» Aligned means that any primitive object of K bytes
must have an address that i1s a multiple of K

+» Aligned addresses for data types:

1 char No restrictions
2 short Lowest bit must be zero: ...0,
4 1nt, float Lowest 2 bits zero: ...00,

long, double, * Lowest 3 bits zero: ...000,

16 long double Lowest 4 bits zero: ...0000, -



W UNIVERSITY of WASHINGTON L12: Arrays, Structs CSE351, Summer 2018

Alignment Principles

+» Aligned Data

= Primitive data type requires K bytes
= Address must be multiple of K
= Required on some machines; advised on x36-64

+» Motivation for Aligning Data
"= Memory accessed by (aligned) chunks of 4 or 8 bytes
(system dependent)
- |nefficient to load or store value that spans quad word boundaries

- Virtual memory trickier when value spans 2 pages (more on this
later)

33



w UNIVERSITY of WASHINGTON L12: Arrays, Structs CSE351, Summer 2018

Structures & Alignment

« Unaligned Data struct S1 {
char c;

C 1[0] 1[1] V int i[2];

p p+l p+5 p+9 p+17 1 Sglfble Vs

+ Aligned Data

= Primitive data type requires K bytes
= Address must be multiple of K

C 1[0] 1[1] \Y;
p+0 P4 p+8 p+16 p+24
S {k y 3 S
Multiple of\4 Multiple of 8

Multiple of 8 internal fragmentation Multiple of 8

34



W UNIVERSITY of WASHINGTON L12: Arrays, Structs CSE351, Summer 2018

Satisfying Struct Alignment (1)

+» Within structure: struct S1 {
= Must satisfy each element’s alignment requirement int i[2];

+ QOverall structure placement Souble V;
= Each structure has alignment requirement Ky 4« > P;

- Knax = Largest alignment of any element
- Counts array elements individually as elements

+» Example:
" Knax = 8, due to double element

C 1[0] 1[1] Vv
p+0 P4 p+8 p+16 p+24

a {k S a

Multiple of\4 Multiple of 8
Multiple of 8 internal fragmentation Multiple of 8

35



W UNIVERSITY of WASHINGTON L12: Arrays, Structs

CSE351, Summer 2018

Satisfying Struct Alignment (2)

/7
0’0

7
0’0

Can find offset of individual fields
using offsetof()

= Need to #1nclude <stddef.h>

= Example: offsetof(struct S2,c) returns 16

For largest alignment requirement Ky ax,
overall structure size must be multiple of K.«

= Compiler will add padding at end of
structure to meet overall structure
alignment requirement

struct S2 {
double v;
int i1[2];
char c;

+ *p;

p+0

V i1[0] i[1] |c
p+8 p+16 p+24
external fragmentation Multiple of 8

36



w UNIVERSITY of WASHINGTON L12: Arrays, Structs CSE351, Summer 2018

Arrays of Structures

« Overall structure length multiple of K4, [Struct S2 {

_ _ _ double v;
+ Satisfy alignment requirement int i[2];
- char c;
for every element in array v af10]:
a[0] a[1] a[2] ©c -
a+0 a+24 a+48 a+72

v i[0] i[1] J[c

a+24 a+32 a+40 ///f a+48

external fragmentation

37



W UNIVERSITY of WASHINGTON L12: Arrays, Structs CSE351, Summer 2018

Alignment of Structs

+» Compiler will do the following:
= Maintains declared ordering of fields in struct

= Each field must be aligned within the struct
(may insert padding)
- offsetof can be used to get actual field offset
= Qverall struct must be aligned according to largest field

= Total struct size must be multiple of its alignment
(may insert padding)
- si1zeoT should be used to get true size of structs

38



W UNIVERSITY of WASHINGTON L12: Arrays, Structs CSE351, Summer 2018

How the Programmer Can Save Space

+» Compiler must respect order elements are declared In

= Sometimes the programmer can save space by declaring large
data types first

struct S4 { struct S5 {
char c; int 1;
int i; ‘ char c;
char d; char d;
+ *p; + *p;
C i d i c|d

| |
12 bytes 8 bytes

39



W UNIVERSITY of WASHINGTON L12: Arrays, Structs CSE351, Summer 2018

: - Vote on sizeof(struct old):
Peer Instruction Question 2 ° L= Sme o

Minimize the size of the struct by re-ordering the vars

struct old { struct new {
int 1; int i;

short s[3];

char *c; ‘

float T;
o }:

< \What are the old and new sizes of the struct?
sizeof(struct old) =

sizeof(struct new) =

A.
B. 22 bytes
C. 28 bytes
D. 32 bytes
E.

We're lost...
40



W UNIVERSITY of WASHINGTON L12: Arrays, Structs CSE351, Summer 2018

Summary

4

Arrays are contiguous allocations of memory

= No bounds checking (and no default initialization)
int af4]1[5]; — array of arrays

= all levels in one contiguous block of memory

L)

*%

o

L)

L)

0‘0

Int* b[4]; — array of pointers to arrays

= First level in one contiguous block of memory

= Each element in the first level points to another “sub” array
= Parts anywhere in memory

‘0

» Structures
= Allocate bytes in order declared
= Pad in middle and at end to satisfy alignment

41



