
CSE351, Summer 2018L07: Assembly I

x86-64 Programming I
CSE 351 Summer 2018

Instructor:
Justin Hsia

Teaching Assistants:
Josie Lee
Natalie Andreeva
Teagan Horkan

http://www.smbc-comics.com/?id=2999

CSE351, Summer 2018L07: Assembly I

Administrivia
 Lab 1b due on Thursday (7/5)
 Submit bits.c, lab1reflect.txt
 Josie has OH on Thursday 1–3 pm

 Homework 2 due next Wednesday (7/11)
 On Integers, Floating Point, and x86-64

 No lecture on Wednesday!
 Section Thursday on Floating Point

2

CSE351, Summer 2018L07: Assembly I

Floating Point Summary
 Floats also suffer from the fixed number of bits

available to represent them
 Can get overflow/underflow
 “Gaps” produced in representable numbers means we can lose

precision, unlike ints
• Some “simple fractions” have no exact representation (e.g. 0.2)
• “Every operation gets a slightly wrong result”

 Floating point arithmetic not associative or distributive
 Mathematically equivalent ways of writing an expression may

compute different results
 Never test floating point values for equality!
 Careful when converting between ints and floats!

3

CSE351, Summer 2018L07: Assembly I

Number Representation Really Matters
 1991: Patriot missile targeting error
 clock skew due to conversion from integer to floating point

 1996: Ariane 5 rocket exploded ($1 billion)
 overflow converting 64-bit floating point to 16-bit integer

 2000: Y2K problem
 limited (decimal) representation: overflow, wrap-around

 2038: Unix epoch rollover
 Unix epoch = seconds since 12am, January 1, 1970
 signed 32-bit integer representation rolls over to TMin in 2038

 Other related bugs:
 1982: Vancouver Stock Exchange 10% error in less than 2 years
 1994: Intel Pentium FDIV (float division) HW bug ($475 million)
 1997: USS Yorktown “smart” warship stranded: divide by zero
 1998: Mars Climate Orbiter crashed: unit mismatch ($193 million)

4

CSE351, Summer 2018L07: Assembly I

Roadmap

5

car *c = malloc(sizeof(car));
c->miles = 100;
c->gals = 17;
float mpg = get_mpg(c);
free(c);

Car c = new Car();
c.setMiles(100);
c.setGals(17);
float mpg =

c.getMPG();

get_mpg:
pushq %rbp
movq %rsp, %rbp
...
popq %rbp
ret

Java:C:

Assembly
language:

Machine
code:

0111010000011000
100011010000010000000010
1000100111000010
110000011111101000011111

Computer
system:

OS:

Memory & data
Integers & floats
x86 assembly
Procedures & stacks
Executables
Arrays & structs
Memory & caches
Processes
Virtual memory
Memory allocation
Java vs. C

CSE351, Summer 2018L07: Assembly I

Translation

6

What makes programs run fast(er)?

Hardware
User

program
in C

AssemblerC
compiler

Code Time Compile Time Run Time

.exe file.c file

CSE351, Summer 2018L07: Assembly I

C Language

HW Interface Affects Performance

7

x86-64

Intel Pentium 4

Intel Core 2

Intel Core i7

AMD Opteron

AMD Athlon

GCC

ARMv8
(AArch64/A64) ARM Cortex-A53

Apple A7

Clang

Your
program

Program
B

Program
A

CompilerSource code Architecture
Different applications
or algorithms

Perform optimizations,
generate instructions

Different
implementations

Hardware
Instruction set

CSE351, Summer 2018L07: Assembly I

Instruction Set Architectures
 The ISA defines:
 The system’s state (e.g. registers, memory, program counter)
 The instructions the CPU can execute
 The effect that each of these instructions will have on the

system state

8

CPU

MemoryPC

Registers

CSE351, Summer 2018L07: Assembly I

Instruction Set Philosophies
 Complex Instruction Set Computing (CISC): Add

more and more elaborate and specialized instructions
as needed
 Lots of tools for programmers to use, but hardware must be

able to handle all instructions
 x86-64 is CISC, but only a small subset of instructions

encountered with Linux programs
 Reduced Instruction Set Computing (RISC): Keep

instruction set small and regular
 Easier to build fast hardware
 Let software do the complicated operations by composing

simpler ones

9

CSE351, Summer 2018L07: Assembly I

General ISA Design Decisions
 Instructions
 What instructions are available? What do they do?
 How are they encoded?

 Registers
 How many registers are there?
 How wide are they?

 Memory
 How do you specify a memory location?

10

CSE351, Summer 2018L07: Assembly I

Mainstream ISAs

11

Macbooks & PCs
(Core i3, i5, i7, M)
x86-64 Instruction Set

Smartphone-like devices
(iPhone, iPad, Raspberry Pi)
ARM Instruction Set

Digital home & networking
equipment
(Blu-ray, PlayStation 2)
MIPS Instruction Set

CSE351, Summer 2018L07: Assembly I

Definitions
 Architecture (ISA): The parts of a processor design

that one needs to understand to write assembly code
 “What is directly visible to software”

 Microarchitecture: Implementation of the
architecture
 CSE/EE 469, 470

 Are the following part of the architecture?
 Number of registers?
 How about CPU frequency?
 Cache size? Memory size?

12

CSE351, Summer 2018L07: Assembly I

Writing Assembly Code? In 2018???
 Chances are, you’ll never write a program in assembly,

but understanding assembly is the key to the machine-
level execution model:
 Behavior of programs in the presence of bugs

• When high-level language model breaks down
 Tuning program performance

• Understand optimizations done/not done by the compiler
• Understanding sources of program inefficiency

 Implementing systems software
• What are the “states” of processes that the OS must manage
• Using special units (timers, I/O co-processors, etc.) inside

processor!
 Fighting malicious software

• Distributed software is in binary form 13

CSE351, Summer 2018L07: Assembly I

CPU

Assembly Programmer’s View

 Programmer-visible state
 PC: the Program Counter (%rip in x86-64)

• Address of next instruction
 Named registers

• Together in “register file”
• Heavily used program data

 Condition codes
• Store status information about most recent

arithmetic operation
• Used for conditional branching 14

PC Registers
Memory

• Code
• Data
• Stack

Addresses

Data

InstructionsCondition
Codes

 Memory
 Byte-addressable array
 Code and user data
 Includes the Stack

(for supporting
procedures)

CSE351, Summer 2018L07: Assembly I

x86-64 Assembly “Data Types”
 Integral data of 1, 2, 4, or 8 bytes
 Data values
 Addresses (untyped pointers)

 Floating point data of 4, 8, or 2x8, 4x4, or 8x2
 Different registers for those (e.g. %xmm1, %ymm2)
 Come from extensions to x86 (SSE, AVX, …)

 No aggregate types such as arrays or structures
 Just contiguously allocated bytes in memory

 Two common syntaxes
 “AT&T”: used by our course, slides, textbook, gnu tools, …
 “Intel”: used by Intel documentation, Intel tools, …
 Must know which you’re reading

15

Not covered
In 351

CSE351, Summer 2018L07: Assembly I

What is a Register?
 A location in the CPU that stores a small amount of

data, which can be accessed very quickly (once every
clock cycle)

 Registers have names, not addresses
 In assembly, they start with % (e.g. %rsi)

 Registers are at the heart of assembly programming
 They are a precious commodity in all architectures, but

especially x86

16

CSE351, Summer 2018L07: Assembly I

x86-64 Integer Registers – 64 bits wide

 Can reference low-order 4 bytes (also low-order 2 & 1 bytes)

17

%r8d%r8
%r9d%r9
%r10d%r10
%r11d%r11
%r12d%r12
%r13d%r13
%r14d%r14
%r15d%r15

%rsp %esp

%eax%rax
%ebx%rbx
%ecx%rcx
%edx%rdx
%esi%rsi
%edi%rdi

%ebp%rbp

CSE351, Summer 2018L07: Assembly I

History: IA32 Registers – 32 bits wide

18

%esi %si

%edi %di

%esp %sp

%ebp %bp

%eax %ax %ah %al

%ecx %cx %ch %cl

%edx %dx %dh %dl

%ebx %bx %bh %bl

16-bit virtual registers
(backwards compatibility)

ge
ne

ra
l p

ur
po

se

accumulate

counter

data

base

source index

destination index

stack pointer

base pointer

Name Origin
(mostly obsolete)

CSE351, Summer 2018L07: Assembly I

Memory vs. Registers
 Addresses vs. Names
 0x7FFFD024C3DC %rdi

 Big vs. Small
 ~ 8 GiB (16 x 8 B) = 128 B

 Slow vs. Fast
 ~50-100 ns sub-nanosecond timescale

 Dynamic vs. Static
 Can “grow” as needed fixed number in hardware

while program runs

19

CSE351, Summer 2018L07: Assembly I

Three Basic Kinds of Instructions
1) Transfer data between memory and register
 Load data from memory into register

• %reg = Mem[address]
 Store register data into memory

• Mem[address] = %reg

2) Perform arithmetic operation on register or memory
data
 c = a + b; z = x << y; i = h & g;

3) Control flow: what instruction to execute next
 Unconditional jumps to/from procedures
 Conditional branches

20

Remember: Memory
is indexed just like an

array of bytes!

CSE351, Summer 2018L07: Assembly I

Operand types
 Immediate: Constant integer data
 Examples: $0x400, $-533
 Like C literal, but prefixed with '$'
 Encoded with 1, 2, 4, or 8 bytes

depending on the instruction
 Register: 1 of 16 integer registers
 Examples: %rax, %r13
 But %rsp reserved for special use
 Others have special uses for particular

instructions
 Memory: Consecutive bytes of

memory at a computed address
 Simplest example: (%rax)
 Various other “address modes”

21

%rax

%rcx

%rdx

%rbx

%rsi

%rdi

%rsp

%rbp

%rN

CSE351, Summer 2018L07: Assembly I

Moving Data
 General form: mov_ source, destination
 Missing letter (_) specifies size of operands
 Note that due to backwards-compatible support for 8086

programs (16-bit machines!), “word” means 16 bits = 2 bytes
in x86 instruction names

 movb src, dst
 Move 1-byte “byte”

 movw src, dst
 Move 2-byte “word”

22

 movl src, dst
 Move 4-byte “long word”

 movq src, dst
 Move 8-byte “quad word”

CSE351, Summer 2018L07: Assembly I

movq Operand Combinations

Source Dest Src, Dest C Analog

movq

Imm
Reg movq $0x4, %rax

Mem movq $-147, (%rax)

Reg
Reg movq %rax, %rdx

Mem movq %rax, (%rdx)

Mem Reg movq (%rax), %rdx

23

 Cannot do memory-memory transfer with a single
instruction
 How would you do it?

var_a = 0x4;

*p_a = -147;

var_d = var_a;

*p_d = var_a;

var_d = *p_a;

CSE351, Summer 2018L07: Assembly I

x86-64 Introduction
 Arithmetic operations
 Memory addressing modes
 swap example

 Address computation instruction (lea)

24

CSE351, Summer 2018L07: Assembly I

Some Arithmetic Operations
 Binary (two-operand) instructions:

 Beware argument
order

 No notion of
datatypes
• Just bits!
• Only arithmetic

vs. logical shifts

 How do you
implement
“r3 = r1 + r2”?

25

Format Computation
addq src, dst dst = dst + src (dst += src)
subq src, dst dst = dst – src

imulq src, dst dst = dst * src signed mult
sarq src, dst dst = dst >> src Arithmetic
shrq src, dst dst = dst >> src Logical
shlq src, dst dst = dst << src (same as salq)
xorq src, dst dst = dst ^ src

andq src, dst dst = dst & src

orq src, dst dst = dst | src

Maximum of one
memory operand

operand size specifier

CSE351, Summer 2018L07: Assembly I

Some Arithmetic Operations
 Unary (one-operand) Instructions:

 See CSPP Section 3.5.5 for more instructions:
mulq, cqto, idivq, divq

26

Format Computation
incq dst dst = dst + 1 increment
decq dst dst = dst – 1 decrement
negq dst dst = –dst negate
notq dst dst = ~dst bitwise complement

CSE351, Summer 2018L07: Assembly I

Arithmetic Example

27

long simple_arith(long x, long y)
{
long t1 = x + y;
long t2 = t1 * 3;
return t2;

}

Register Use(s)
%rdi 1st argument (x)
%rsi 2nd argument (y)
%rax return value

y += x;
y *= 3;
long r = y;
return r;

simple_arith:
addq %rdi, %rsi
imulq $3, %rsi
movq %rsi, %rax
ret

CSE351, Summer 2018L07: Assembly I

Example of Basic Addressing Modes

28

void swap(long *xp, long *yp)
{
long t0 = *xp;
long t1 = *yp;
*xp = t1;
*yp = t0;

}

swap:
movq (%rdi), %rax
movq (%rsi), %rdx
movq %rdx, (%rdi)
movq %rax, (%rsi)
ret

CSE351, Summer 2018L07: Assembly I

Understanding swap()

29

%rdi

%rsi

%rax

%rdx

Registers Memory

Register Variable
%rdi ⇔ xp
%rsi ⇔ yp
%rax ⇔ t0
%rdx ⇔ t1

void swap(long *xp, long *yp)
{
long t0 = *xp;
long t1 = *yp;
*xp = t1;
*yp = t0;

}

swap:
movq (%rdi), %rax
movq (%rsi), %rdx
movq %rdx, (%rdi)
movq %rax, (%rsi)
ret

CSE351, Summer 2018L07: Assembly I

Understanding swap()

30

0x120

0x118

0x110

0x108

0x100

Word
Address

%rdi

%rsi

%rax

%rdx

0x120

0x100

Registers Memory

123

456

123

swap:
movq (%rdi), %rax # t0 = *xp
movq (%rsi), %rdx # t1 = *yp
movq %rdx, (%rdi) # *xp = t1
movq %rax, (%rsi) # *yp = t0
ret

CSE351, Summer 2018L07: Assembly I

Understanding swap()

31

0x120

0x118

0x110

0x108

0x100

%rdi

%rsi

%rax

%rdx

0x120

0x100

123

123

456

123

swap:
movq (%rdi), %rax # t0 = *xp
movq (%rsi), %rdx # t1 = *yp
movq %rdx, (%rdi) # *xp = t1
movq %rax, (%rsi) # *yp = t0
ret

Word
Address

Registers Memory

CSE351, Summer 2018L07: Assembly I

Understanding swap()

32

0x120

0x118

0x110

0x108

0x100

%rdi

%rsi

%rax

%rdx

0x120

0x100

123

456

123

456

123

swap:
movq (%rdi), %rax # t0 = *xp
movq (%rsi), %rdx # t1 = *yp
movq %rdx, (%rdi) # *xp = t1
movq %rax, (%rsi) # *yp = t0
ret

Word
Address

Registers Memory

CSE351, Summer 2018L07: Assembly I

Understanding swap()

33

0x120

0x118

0x110

0x108

0x100

%rdi

%rsi

%rax

%rdx

0x120

0x100

123

456

123

456

456

swap:
movq (%rdi), %rax # t0 = *xp
movq (%rsi), %rdx # t1 = *yp
movq %rdx, (%rdi) # *xp = t1
movq %rax, (%rsi) # *yp = t0
ret

Word
Address

Registers Memory

CSE351, Summer 2018L07: Assembly I

Understanding swap()

34

0x120

0x118

0x110

0x108

0x100

%rdi

%rsi

%rax

%rdx

0x120

0x100

123

456

123

123

456

swap:
movq (%rdi), %rax # t0 = *xp
movq (%rsi), %rdx # t1 = *yp
movq %rdx, (%rdi) # *xp = t1
movq %rax, (%rsi) # *yp = t0
ret

Word
Address

Registers Memory

CSE351, Summer 2018L07: Assembly I

Summary
 x86-64 is a complex instruction set computing (CISC)

architecture
 Registers are named locations in the CPU for holding

and manipulating data
 x86-64 uses 16 64-bit wide registers

 Assembly operands include immediates, registers, and
data at specified memory locations

35

