
CSE351, Summer 2018L07: Assembly I

x86-64 Programming I
CSE 351 Summer 2018

Instructor:
Justin Hsia

Teaching Assistants:
Josie Lee
Natalie Andreeva
Teagan Horkan

http://www.smbc-comics.com/?id=2999

CSE351, Summer 2018L07: Assembly I

Administrivia
 Lab 1b due on Thursday (7/5)
 Submit bits.c, lab1reflect.txt
 Josie has OH on Thursday 1–3 pm

 Homework 2 due next Wednesday (7/11)
 On Integers, Floating Point, and x86-64

 No lecture on Wednesday!
 Section Thursday on Floating Point

2

CSE351, Summer 2018L07: Assembly I

Floating Point Summary
 Floats also suffer from the fixed number of bits

available to represent them
 Can get overflow/underflow
 “Gaps” produced in representable numbers means we can lose

precision, unlike ints
• Some “simple fractions” have no exact representation (e.g. 0.2)
• “Every operation gets a slightly wrong result”

 Floating point arithmetic not associative or distributive
 Mathematically equivalent ways of writing an expression may

compute different results
 Never test floating point values for equality!
 Careful when converting between ints and floats!

3

CSE351, Summer 2018L07: Assembly I

Number Representation Really Matters
 1991: Patriot missile targeting error
 clock skew due to conversion from integer to floating point

 1996: Ariane 5 rocket exploded ($1 billion)
 overflow converting 64-bit floating point to 16-bit integer

 2000: Y2K problem
 limited (decimal) representation: overflow, wrap-around

 2038: Unix epoch rollover
 Unix epoch = seconds since 12am, January 1, 1970
 signed 32-bit integer representation rolls over to TMin in 2038

 Other related bugs:
 1982: Vancouver Stock Exchange 10% error in less than 2 years
 1994: Intel Pentium FDIV (float division) HW bug ($475 million)
 1997: USS Yorktown “smart” warship stranded: divide by zero
 1998: Mars Climate Orbiter crashed: unit mismatch ($193 million)

4

CSE351, Summer 2018L07: Assembly I

Roadmap

5

car *c = malloc(sizeof(car));
c->miles = 100;
c->gals = 17;
float mpg = get_mpg(c);
free(c);

Car c = new Car();
c.setMiles(100);
c.setGals(17);
float mpg =

c.getMPG();

get_mpg:
pushq %rbp
movq %rsp, %rbp
...
popq %rbp
ret

Java:C:

Assembly
language:

Machine
code:

0111010000011000
100011010000010000000010
1000100111000010
110000011111101000011111

Computer
system:

OS:

Memory & data
Integers & floats
x86 assembly
Procedures & stacks
Executables
Arrays & structs
Memory & caches
Processes
Virtual memory
Memory allocation
Java vs. C

CSE351, Summer 2018L07: Assembly I

Translation

6

What makes programs run fast(er)?

Hardware
User

program
in C

AssemblerC
compiler

Code Time Compile Time Run Time

.exe file.c file

CSE351, Summer 2018L07: Assembly I

C Language

HW Interface Affects Performance

7

x86-64

Intel Pentium 4

Intel Core 2

Intel Core i7

AMD Opteron

AMD Athlon

GCC

ARMv8
(AArch64/A64) ARM Cortex-A53

Apple A7

Clang

Your
program

Program
B

Program
A

CompilerSource code Architecture
Different applications
or algorithms

Perform optimizations,
generate instructions

Different
implementations

Hardware
Instruction set

CSE351, Summer 2018L07: Assembly I

Instruction Set Architectures
 The ISA defines:
 The system’s state (e.g. registers, memory, program counter)
 The instructions the CPU can execute
 The effect that each of these instructions will have on the

system state

8

CPU

MemoryPC

Registers

CSE351, Summer 2018L07: Assembly I

Instruction Set Philosophies
 Complex Instruction Set Computing (CISC): Add

more and more elaborate and specialized instructions
as needed
 Lots of tools for programmers to use, but hardware must be

able to handle all instructions
 x86-64 is CISC, but only a small subset of instructions

encountered with Linux programs
 Reduced Instruction Set Computing (RISC): Keep

instruction set small and regular
 Easier to build fast hardware
 Let software do the complicated operations by composing

simpler ones

9

CSE351, Summer 2018L07: Assembly I

General ISA Design Decisions
 Instructions
 What instructions are available? What do they do?
 How are they encoded?

 Registers
 How many registers are there?
 How wide are they?

 Memory
 How do you specify a memory location?

10

CSE351, Summer 2018L07: Assembly I

Mainstream ISAs

11

Macbooks & PCs
(Core i3, i5, i7, M)
x86-64 Instruction Set

Smartphone-like devices
(iPhone, iPad, Raspberry Pi)
ARM Instruction Set

Digital home & networking
equipment
(Blu-ray, PlayStation 2)
MIPS Instruction Set

CSE351, Summer 2018L07: Assembly I

Definitions
 Architecture (ISA): The parts of a processor design

that one needs to understand to write assembly code
 “What is directly visible to software”

 Microarchitecture: Implementation of the
architecture
 CSE/EE 469, 470

 Are the following part of the architecture?
 Number of registers?
 How about CPU frequency?
 Cache size? Memory size?

12

CSE351, Summer 2018L07: Assembly I

Writing Assembly Code? In 2018???
 Chances are, you’ll never write a program in assembly,

but understanding assembly is the key to the machine-
level execution model:
 Behavior of programs in the presence of bugs

• When high-level language model breaks down
 Tuning program performance

• Understand optimizations done/not done by the compiler
• Understanding sources of program inefficiency

 Implementing systems software
• What are the “states” of processes that the OS must manage
• Using special units (timers, I/O co-processors, etc.) inside

processor!
 Fighting malicious software

• Distributed software is in binary form 13

CSE351, Summer 2018L07: Assembly I

CPU

Assembly Programmer’s View

 Programmer-visible state
 PC: the Program Counter (%rip in x86-64)

• Address of next instruction
 Named registers

• Together in “register file”
• Heavily used program data

 Condition codes
• Store status information about most recent

arithmetic operation
• Used for conditional branching 14

PC Registers
Memory

• Code
• Data
• Stack

Addresses

Data

InstructionsCondition
Codes

 Memory
 Byte-addressable array
 Code and user data
 Includes the Stack

(for supporting
procedures)

CSE351, Summer 2018L07: Assembly I

x86-64 Assembly “Data Types”
 Integral data of 1, 2, 4, or 8 bytes
 Data values
 Addresses (untyped pointers)

 Floating point data of 4, 8, or 2x8, 4x4, or 8x2
 Different registers for those (e.g. %xmm1, %ymm2)
 Come from extensions to x86 (SSE, AVX, …)

 No aggregate types such as arrays or structures
 Just contiguously allocated bytes in memory

 Two common syntaxes
 “AT&T”: used by our course, slides, textbook, gnu tools, …
 “Intel”: used by Intel documentation, Intel tools, …
 Must know which you’re reading

15

Not covered
In 351

CSE351, Summer 2018L07: Assembly I

What is a Register?
 A location in the CPU that stores a small amount of

data, which can be accessed very quickly (once every
clock cycle)

 Registers have names, not addresses
 In assembly, they start with % (e.g. %rsi)

 Registers are at the heart of assembly programming
 They are a precious commodity in all architectures, but

especially x86

16

CSE351, Summer 2018L07: Assembly I

x86-64 Integer Registers – 64 bits wide

 Can reference low-order 4 bytes (also low-order 2 & 1 bytes)

17

%r8d%r8
%r9d%r9
%r10d%r10
%r11d%r11
%r12d%r12
%r13d%r13
%r14d%r14
%r15d%r15

%rsp %esp

%eax%rax
%ebx%rbx
%ecx%rcx
%edx%rdx
%esi%rsi
%edi%rdi

%ebp%rbp

CSE351, Summer 2018L07: Assembly I

History: IA32 Registers – 32 bits wide

18

%esi %si

%edi %di

%esp %sp

%ebp %bp

%eax %ax %ah %al

%ecx %cx %ch %cl

%edx %dx %dh %dl

%ebx %bx %bh %bl

16-bit virtual registers
(backwards compatibility)

ge
ne

ra
l p

ur
po

se

accumulate

counter

data

base

source index

destination index

stack pointer

base pointer

Name Origin
(mostly obsolete)

CSE351, Summer 2018L07: Assembly I

Memory vs. Registers
 Addresses vs. Names
 0x7FFFD024C3DC %rdi

 Big vs. Small
 ~ 8 GiB (16 x 8 B) = 128 B

 Slow vs. Fast
 ~50-100 ns sub-nanosecond timescale

 Dynamic vs. Static
 Can “grow” as needed fixed number in hardware

while program runs

19

CSE351, Summer 2018L07: Assembly I

Three Basic Kinds of Instructions
1) Transfer data between memory and register
 Load data from memory into register

• %reg = Mem[address]
 Store register data into memory

• Mem[address] = %reg

2) Perform arithmetic operation on register or memory
data
 c = a + b; z = x << y; i = h & g;

3) Control flow: what instruction to execute next
 Unconditional jumps to/from procedures
 Conditional branches

20

Remember: Memory
is indexed just like an

array of bytes!

CSE351, Summer 2018L07: Assembly I

Operand types
 Immediate: Constant integer data
 Examples: $0x400, $-533
 Like C literal, but prefixed with '$'
 Encoded with 1, 2, 4, or 8 bytes

depending on the instruction
 Register: 1 of 16 integer registers
 Examples: %rax, %r13
 But %rsp reserved for special use
 Others have special uses for particular

instructions
 Memory: Consecutive bytes of

memory at a computed address
 Simplest example: (%rax)
 Various other “address modes”

21

%rax

%rcx

%rdx

%rbx

%rsi

%rdi

%rsp

%rbp

%rN

CSE351, Summer 2018L07: Assembly I

Moving Data
 General form: mov_ source, destination
 Missing letter (_) specifies size of operands
 Note that due to backwards-compatible support for 8086

programs (16-bit machines!), “word” means 16 bits = 2 bytes
in x86 instruction names

 movb src, dst
 Move 1-byte “byte”

 movw src, dst
 Move 2-byte “word”

22

 movl src, dst
 Move 4-byte “long word”

 movq src, dst
 Move 8-byte “quad word”

CSE351, Summer 2018L07: Assembly I

movq Operand Combinations

Source Dest Src, Dest C Analog

movq

Imm
Reg movq $0x4, %rax

Mem movq $-147, (%rax)

Reg
Reg movq %rax, %rdx

Mem movq %rax, (%rdx)

Mem Reg movq (%rax), %rdx

23

 Cannot do memory-memory transfer with a single
instruction
 How would you do it?

var_a = 0x4;

*p_a = -147;

var_d = var_a;

*p_d = var_a;

var_d = *p_a;

CSE351, Summer 2018L07: Assembly I

x86-64 Introduction
 Arithmetic operations
 Memory addressing modes
 swap example

 Address computation instruction (lea)

24

CSE351, Summer 2018L07: Assembly I

Some Arithmetic Operations
 Binary (two-operand) instructions:


 Beware argument
order

 No notion of
datatypes
• Just bits!
• Only arithmetic

vs. logical shifts

 How do you
implement
“r3 = r1 + r2”?

25

Format Computation
addq src, dst dst = dst + src (dst += src)
subq src, dst dst = dst – src

imulq src, dst dst = dst * src signed mult
sarq src, dst dst = dst >> src Arithmetic
shrq src, dst dst = dst >> src Logical
shlq src, dst dst = dst << src (same as salq)
xorq src, dst dst = dst ^ src

andq src, dst dst = dst & src

orq src, dst dst = dst | src

Maximum of one
memory operand

operand size specifier

CSE351, Summer 2018L07: Assembly I

Some Arithmetic Operations
 Unary (one-operand) Instructions:

 See CSPP Section 3.5.5 for more instructions:
mulq, cqto, idivq, divq

26

Format Computation
incq dst dst = dst + 1 increment
decq dst dst = dst – 1 decrement
negq dst dst = –dst negate
notq dst dst = ~dst bitwise complement

CSE351, Summer 2018L07: Assembly I

Arithmetic Example

27

long simple_arith(long x, long y)
{
long t1 = x + y;
long t2 = t1 * 3;
return t2;

}

Register Use(s)
%rdi 1st argument (x)
%rsi 2nd argument (y)
%rax return value

y += x;
y *= 3;
long r = y;
return r;

simple_arith:
addq %rdi, %rsi
imulq $3, %rsi
movq %rsi, %rax
ret

CSE351, Summer 2018L07: Assembly I

Example of Basic Addressing Modes

28

void swap(long *xp, long *yp)
{
long t0 = *xp;
long t1 = *yp;
*xp = t1;
*yp = t0;

}

swap:
movq (%rdi), %rax
movq (%rsi), %rdx
movq %rdx, (%rdi)
movq %rax, (%rsi)
ret

CSE351, Summer 2018L07: Assembly I

Understanding swap()

29

%rdi

%rsi

%rax

%rdx

Registers Memory

Register Variable
%rdi ⇔ xp
%rsi ⇔ yp
%rax ⇔ t0
%rdx ⇔ t1

void swap(long *xp, long *yp)
{
long t0 = *xp;
long t1 = *yp;
*xp = t1;
*yp = t0;

}

swap:
movq (%rdi), %rax
movq (%rsi), %rdx
movq %rdx, (%rdi)
movq %rax, (%rsi)
ret

CSE351, Summer 2018L07: Assembly I

Understanding swap()

30

0x120

0x118

0x110

0x108

0x100

Word
Address

%rdi

%rsi

%rax

%rdx

0x120

0x100

Registers Memory

123

456

123

swap:
movq (%rdi), %rax # t0 = *xp
movq (%rsi), %rdx # t1 = *yp
movq %rdx, (%rdi) # *xp = t1
movq %rax, (%rsi) # *yp = t0
ret

CSE351, Summer 2018L07: Assembly I

Understanding swap()

31

0x120

0x118

0x110

0x108

0x100

%rdi

%rsi

%rax

%rdx

0x120

0x100

123

123

456

123

swap:
movq (%rdi), %rax # t0 = *xp
movq (%rsi), %rdx # t1 = *yp
movq %rdx, (%rdi) # *xp = t1
movq %rax, (%rsi) # *yp = t0
ret

Word
Address

Registers Memory

CSE351, Summer 2018L07: Assembly I

Understanding swap()

32

0x120

0x118

0x110

0x108

0x100

%rdi

%rsi

%rax

%rdx

0x120

0x100

123

456

123

456

123

swap:
movq (%rdi), %rax # t0 = *xp
movq (%rsi), %rdx # t1 = *yp
movq %rdx, (%rdi) # *xp = t1
movq %rax, (%rsi) # *yp = t0
ret

Word
Address

Registers Memory

CSE351, Summer 2018L07: Assembly I

Understanding swap()

33

0x120

0x118

0x110

0x108

0x100

%rdi

%rsi

%rax

%rdx

0x120

0x100

123

456

123

456

456

swap:
movq (%rdi), %rax # t0 = *xp
movq (%rsi), %rdx # t1 = *yp
movq %rdx, (%rdi) # *xp = t1
movq %rax, (%rsi) # *yp = t0
ret

Word
Address

Registers Memory

CSE351, Summer 2018L07: Assembly I

Understanding swap()

34

0x120

0x118

0x110

0x108

0x100

%rdi

%rsi

%rax

%rdx

0x120

0x100

123

456

123

123

456

swap:
movq (%rdi), %rax # t0 = *xp
movq (%rsi), %rdx # t1 = *yp
movq %rdx, (%rdi) # *xp = t1
movq %rax, (%rsi) # *yp = t0
ret

Word
Address

Registers Memory

CSE351, Summer 2018L07: Assembly I

Summary
 x86-64 is a complex instruction set computing (CISC)

architecture
 Registers are named locations in the CPU for holding

and manipulating data
 x86-64 uses 16 64-bit wide registers

 Assembly operands include immediates, registers, and
data at specified memory locations

35

