x86-64 Programming I

CSE 351 Summer 2018

Instructor:

Justin Hsia

Teaching Assistants:

Josie Lee Natalie Andreeva

Teagan Horkan

http://www.smbc-comics.com/?id=2999

Administrivia

- Lab 1b due on Thursday (7/5)
 - Submit bits.c, lab1reflect.txt
 - Josie has OH on Thursday 1–3 pm
- Homework 2 due next Wednesday (7/11)
 - On Integers, Floating Point, and x86-64
- No lecture on Wednesday!
- Section Thursday on Floating Point

Floating Point Summary

- Floats also suffer from the fixed number of bits available to represent them
 - Can get overflow/underflow
 - "Gaps" produced in representable numbers means we can lose precision, unlike ints
 - Some "simple fractions" have no exact representation (*e.g.* 0.2)
 - "Every operation gets a slightly wrong result"
- Floating point arithmetic not associative or distributive
 - Mathematically equivalent ways of writing an expression may compute different results
- Never test floating point values for equality!
- Careful when converting between ints and floats!

Number Representation Really Matters

- ✤ 1991: Patriot missile targeting error
 - clock skew due to conversion from integer to floating point
- * 1996: Ariane 5 rocket exploded (\$1 billion)
 - overflow converting 64-bit floating point to 16-bit integer
- **2000:** Y2K problem
 - Iimited (decimal) representation: overflow, wrap-around
- ✤ 2038: Unix epoch rollover
 - Unix epoch = seconds since 12am, January 1, 1970
 - signed 32-bit integer representation rolls over to TMin in 2038

Other related bugs:

- 1982: Vancouver Stock Exchange 10% error in less than 2 years
- 1994: Intel Pentium FDIV (float division) HW bug (\$475 million)
- 1997: USS Yorktown "smart" warship stranded: divide by zero
- 1998: Mars Climate Orbiter crashed: unit mismatch (\$193 million)

Roadmap

Translation

What makes programs run fast(er)?

HW Interface Affects Performance

Instruction Set Architectures

- The ISA defines:
 - The system's state (*e.g.* registers, memory, program counter)
 - The instructions the CPU can execute
 - The effect that each of these instructions will have on the system state

Instruction Set Philosophies

- Complex Instruction Set Computing (CISC): Add more and more elaborate and specialized instructions as needed
 - Lots of tools for programmers to use, but hardware must be able to handle all instructions
 - x86-64 is CISC, but only a small subset of instructions encountered with Linux programs
- Reduced Instruction Set Computing (RISC): Keep instruction set small and regular
 - Easier to build fast hardware
 - Let software do the complicated operations by composing simpler ones

General ISA Design Decisions

Instructions

- What instructions are available? What do they do?
- How are they encoded? instructions are data!
 binary encoding
- Registers
 - How many registers are there?
 - How wide are they? word size (64 bits)
- Memory
 - How do you specify a memory location?

an address is a word size different ways to specify/"build" an address

Mainstream ISAs

Macbooks & PCs (Core i3, i5, i7, M) <u>x86-64 Instruction Set</u>

ARM architectures

Designer	ARM Holdings
Bits	32-bit, 64-bit
Introduced	1985; 31 years ago
Design	RISC
Туре	Register-Register
Encoding	AArch64/A64 and AArch32/A32 use 32-bit instructions, T32 (Thumb-2) uses mixed 16- and 32-bit instructions. ARMv7 user- space compatibility ^[1]
Endianness	Bi (little as default)

Smartphone-like devices (iPhone, iPad, Raspberry Pi) <u>ARM Instruction Set</u>

MIPS

MIPS Technologies, Inc.
<u>64-bit</u> (32→64)
1981; 35 years ago
RISC
Register-Register
Fixed
Bi

Digital home & networking equipment (Blu-ray, PlayStation 2) <u>MIPS Instruction Set</u>

Definitions

- Architecture (ISA): The parts of a processor design that one needs to understand to write assembly code
 - "What is directly visible to software"
- Microarchitecture: Implementation of the architecture
 - CSE/EE 469, 470
- Are the following part of the architecture?
 - Number of registers? Yes
 - How about CPU frequency? No
 - Cache size? Memory size? No modul ar

Writing Assembly Code? In 2018???

- Chances are, you'll never write a program in assembly, but understanding assembly is the key to the machinelevel execution model:
 - Behavior of programs in the presence of bugs
 - When high-level language model breaks down
 - Tuning program performance
 - Understand optimizations done/not done by the compiler
 - Understanding sources of program inefficiency
 - Implementing systems software
 - What are the "states" of processes that the OS must manage
 - Using special units (timers, I/O co-processors, etc.) inside processor!
 - Fighting malicious software
 - Distributed software is in binary form

Assembly Programmer's View

- Programmer-visible state
 - PC: the Program Counter (%rip in x86-64)
 - Address of next instruction
 - Named registers
 - Together in "register file"
 - · Heavily used program data
 - Condition codes
 - Store status information about most recent arithmetic operation
 - Used for conditional branching

- Memory
 - Byte-addressable array
 - Code and user data
 - Includes the Stack (for supporting procedures)

x86-64 Assembly "Data Types"

- Integral data of 1, 2, 4, or 8 bytes
 - Data values
 - Addresses (untyped pointers)
- ✤ Floating point data of 4, 8, or 2x8, 4x4, or 8x2
 - Different registers for those (e.g. %xmm1, %ymm2)
 - Come from *extensions to x86* (SSE, AVX, ...)
- No aggregate types such as arrays or structures
 - Just contiguously allocated bytes in memory
- Two common syntaxes
 - "("AT&T": used by our course, slides, textbook, gnu tools, ...
- × "Intel": used by Intel documentation, Intel tools, ...
 - Must know which you're reading

What is a Register?

- A location in the CPU that stores a small amount of data, which can be accessed very quickly (once every clock cycle)
- ✤ Registers have *names*, not *addresses*
 - In assembly, they start with % (e.g. %rsi)
- Registers are at the heart of assembly programming
 - They are a precious commodity in all architectures, but especially x86 only 16 of them...

x86-64 Integer Registers – 64 bits wide

564 bits	J 32 bits	√ 64 bits	C 32 bits
%rax	%eax	%r8	%r8d
%rbx	%ebx	%r9	%r9d
%rcx	%ecx	%r10	%r10d
%rdx	%edx	%r11	%rlld
%rsi	%esi	%r12	%r12d
%rdi	%edi	%r13	%r13d
%rsp	%esp	%r14	%r14d
%rbp	%ebp	%r15	%r15d

Can reference low-order 4 bytes (also low-order 2 & 1 bytes)

Memory

Registers VS.

- Addresses
 - 0x7FFFD024C3DC
- ✤ Big
 - ~ 8 GiB
- Slow VS.
 - ~50-100 ns
- Dynamic
 - Can "grow" as needed while program runs

Names VS.

%rdi

- Small VS. $(16 \times 8 B) = 128 B$
 - Fast
 - - sub-nanosecond timescale

vs. Static

fixed number in hardware

Three Basic Kinds of Instructions

- 1) Transfer data between memory and register
 - Load data from memory into register
 - %reg = Mem[address]
 - Store register data into memory
 - Mem[address] = %reg

Remember: Memory is indexed just like an array of bytes!

- 2) Perform arithmetic operation on register or memory data
 - c = a + b; z = x << y; i = h & g;</pre>
- 3) Control flow: what instruction to execute next
 - Unconditional jumps to/from procedures
 - Conditional branches

stack.

data at that address

Operand types

- *Immediate:* Constant integer data

 - Examples: \$0x400, \$-533 hex decimal Like C literal, but prefixed with '\$'
 - Encoded with 1, 2, 4, or 8 bytes depending on the instruction
- **Register:** 1 of 16 integer registers
 - Examples: %rax, %r13
 - But %rsp reserved for special use
 - pointer Others have special uses for particular instructions
- ✤ Memory: Consecutive bytes of memory at a computed address
 - take data in % rax, ■ Simplest example: (%rax 🧲 treat as address,
 - Various other "address modes"

	%rax
	%rcx
	%rdx
	%rbx
	%rsi
	%rdi
\uparrow	%rsp
	%rbp
-	
	8rN r8-r15

Moving Data

- * General form: (mov____________, destination
 - Missing letter (_) specifies size of operands
 - Note that due to backwards-compatible support for 8086 programs (16-bit machines!), "word" means 16 bits = 2 bytes in x86 instruction names
- * mov<u>b</u> src, dst
 - Move 1-byte "byte"
- * movw_src, dst
 - Move 2-byte "word"

- * movl src, dst
 - Move 4-byte "long word"
- * movg src, dst
 - Move 8-byte "quad word"

Cannot do memory-memory transfer with a single instruction () Men→Reg move (³rax), ³rdx
 How would you do it? (2) Reg→Mem move ³rdx, (³rbx)

x86-64 Introduction

- Arithmetic operations
- Memory addressing modes
 - swap example
- Address computation instruction (lea)

Some Arithmetic Operations

- Binary (two-operand) instructions:
 - Maximum of one memory operand
 - Beware argument order (AT&T syntax)
 - No notion of datatypes
 - Just bits!
 - Only arithmetic vs. logical shifts
 - How do you
 implement
 "r3 = r1 + r2

erand	d) inst	ructio	ons:	_ Imi	n, Reg, or	Mem
ie	F	ormat		Comp	utation	
d	addq	src,	dst	dst = c	b + a lst + src	(dst += src)
))	subq	src,	dst	dst = d	dst – src	
/	imulq	src,	dst	dst = d	dst * src	signed mult
	sarq	src,	dst	dst = d	st >> src	A rithmetic
	shrq	src,	dst	dst = d	st >> src	Logical
	shlq	src,	dst	dst = d	st << src	(same as salq)
	xorq	src,	dst	dst = d	dst ^ src	
	andq	src,	dst	dst = d	lst & src	
		src,	dst	dst = d	dst src	
operat				-	$(b, w, l, \alpha$	(p~q)
× 2"?	subq % add q % add q %	rex,%rex ,rax,%rex .rbx,%rex	# rcx = # rcx= (# rcx=	= U = vax rax+rbx	mixing 8, roo add q 9, rb	r, %rex #rex=rex x, %rex #rex=rex+rbx 25

Some Arithmetic Operations

Unary (one-operand) Instructions:

Format	Computation	
incq dst	dst = dst + 1	increment
decq dst	dst = dst – 1	decrement
negq dst	dst = -dst	negate
notq dst	dst = ~dst	bitwise complement

 See CSPP Section 3.5.5 for more instructions: mulq, cqto, idivq, divq

Use(s)

 1^{st} argument (x)

Register

%rdi

Arithmetic Example

11

Example of Basic Addressing Modes

```
void swap(long *xp, long *yp)
{
    long t0 = *xp;
    long t1 = *yp;
    *xp = t1;
    *yp = t0;
}
```

V			1	- N
swap:	Stc	, dst	(AT &T :	(mtax)
movq	(%rdi)	, %rax		
movq	(%rsi)			
movq		(%rdi)		
movq	<pre>%rax,</pre>	(%rsi)		
ret				
	Ĭ	Tem operand	s	
		•		

```
void swap(long *xp, long *yp)
{
    long t0 = *xp;
    long t1 = *yp;
    *xp = t1;
    *yp = t0;
}
```


swap:	
movq	(%rdi), %rax
movq	(%rsi), %rdx
movq	%rdx, (%rdi)
movq	%rax, (%rsi)
ret	

Registe	<u>ariable</u>	
%rdi	\Leftrightarrow	xp
%rsi	\Leftrightarrow	ур
%rax	\Leftrightarrow	t0
%rdx	\Leftrightarrow	t1

swap:					
movq	(%rdi), %rax	#	t0	=	*xp
movq	(%rsi), %rdx	#	t1	=	*yp
movq	<pre>%rdx, (%rdi)</pre>	#	*xp	=	t1
movq	<pre>%rax, (%rsi)</pre>	#	*yp	=	t0
ret					

swap.					
movq	(%rdi), %rax	#	t0	=	*xp
movq	(%rsi), %rdx	#	t1	=	*yp
	%rdx, (<u>%rdi</u>)				
movq	%rax, (%rsi)	#	*yp	=	t0
ret					

swap.					
movq	(%rdi), %rax	#	t0	=	*xp
movq	(%rsi), %rdx	#	t1	=	*yp
movq	<pre>%rdx, (%rdi)</pre>	#	*xp	=	t1
movq	<pre>%rax, (%rsi)</pre>	#	*yp	=	t0
ret					

Summary

- x86-64 is a complex instruction set computing (CISC) architecture
- Registers are named locations in the CPU for holding and manipulating data
 - x86-64 uses 16 64-bit wide registers
- Assembly operands include immediates, registers, and data at specified memory locations