Floating Point

CSE 351 Summer 2018

Instructor:

Justin Hsia

Teaching Assistants:

Josie Lee Natalie Andreeva Teagan Horkan

http://xkcd.com/571/

Administrivia

* Lab 1a due tonight at 11:59 pm
- Only submit pointer.c
- Make sure to use dlc.py
* Lab 1b due Thursday (7/5)
- Submit bits.c, lab1reflect.txt
- Start early and come to office hours!
* Homework 2 due 7/11
- On Integers, Floating Point, and x86-64

Floating Point Topics

* Fractional binary numbers
* IEEE floating-point standard
* Floating-point operations and rounding
* Floating-point in C
* There are many more details that we won't cover - It's a 58 -page standard...

IEEE Floating Point

* IEEE 754
- Established in 1985 as uniform standard for floating point arithmetic
- Main idea: make numerically sensitive programs portable
- Specifies two things: representation and result of floating operations
- Now supported by all major CPUs
* Driven by numerical concerns
- Scientists/numerical analysts want them to be as real as possible
- Engineers want them to be easy to implement and fast
- In the end:
- Scientists mostly won out
- Nice standards for rounding, overflow, underflow, but...
- Hard to make fast in hardware
- Float operations can be an order of magnitude slower than integer operations

Floating Point Encoding

* Use normalized, base 2 scientific notation:
- Value: $\quad \pm 1 \times$ Mantissa $\times 2^{\text {Exponent }}$
- Bit Fields: $\quad(-1)^{\mathrm{S}} \times 1 . \mathrm{M} \times 2^{\text {(E-bias) }}$
* Representation Scheme:
- Sign bit (0 is positive, 1 is negative)
- Mantissa (a.k.a. significand) is the fractional part of the number in normalized form and encoded in bit vector \mathbf{M}
- Exponent weights the value by a (possibly negative) power of 2 and encoded in the bit vector \mathbf{E}

$$
23 \quad 22
$$

23 bits

$$
\begin{aligned}
& \\
& 1 \text { bit } 8 \text { bits }
\end{aligned}
$$

The Exponent Field

* Use biased notation
- Read E as unsigned, but with bias of $2^{w-1}-1=127$
- Representable exponents roughly $\frac{1}{2}$ positive and $\frac{1}{2}$ negative
- Exponent $0(\operatorname{Exp}=0)$ is represented as $E=0 b 01111111$
* Why biased?
- Makes floating point arithmetic easier
- Makes somewhat compatible with two's complement
* Practice: To encode in biased notation, add the bias then encode in unsigned:
- Exp $=1 \quad \rightarrow \quad \rightarrow E=0 b$
- $\operatorname{Exp}=127 \rightarrow \quad \rightarrow \mathrm{E}=0 \mathrm{~b}$
- $\operatorname{Exp}=-63 \rightarrow \quad \rightarrow E=0 b$

The Mantissa (Fraction) Field

$$
(-1)^{\mathrm{S}} \times(1 . \mathrm{M}) \times 2^{(\mathrm{E}-\mathrm{bias})}
$$

* Note the implicit 1 in front of the M bit vector
- Example: Ob 00111111110000000000000000000000 is read as $1.1_{2}=1.5_{10}$, not $0.1_{2}=0.5_{10}$
- Gives us an extra bit of precision
* Mantissa "limits"
- Low values near $\mathrm{M}=0 \mathrm{~b} 0 . . .0$ are close to $2^{\text {Exp }}$
- High values near $M=0 b 1 \ldots 1$ are close to $2^{\text {Exp }+1}$

Peer Instruction Question

* What is the correct value encoded by the following floating point number?
- Ob 01000000011000000000000000000000
- Vote at http://PollEv.com/justinh
A. +0.75
B. +1.5
C. +2.75
D. +3.5
E. We're lost...

Precision and Accuracy

* Precision is a count of the number of bits in a computer word used to represent a value
- Capacity for accuracy
* Accuracy is a measure of the difference between the actual value of a number and its computer representation
- High precision permits high accuracy but doesn't guarantee it. It is possible to have high precision but low accuracy.
- Example: float pi = 3.14;
- pi will be represented using all 24 bits of the mantissa (highly precise), but is only an approximation (not accurate)

Need Greater Precision?

* Double Precision (vs. Single Precision) in 64 bits

- C variable declared as double
- Exponent bias is now $2^{10}-1=1023$
- Advantages:
greater precision (larger mantissa), greater range (larger exponent)
- Disadvantages: more bits used, slower to manipulate

Representing Very Small Numbers

* But wait... what happened to zero?
- Using standard encoding $0 \times 00000000=$
- Special case: E and M all zeros $=0$
- Two zeros! But at least $0 \times 00000000=0$ like integers
* New numbers closest to 0:
- $a=1.0 \ldots 0_{2} \times 2^{-126}=2^{-126}$
- $b=1.0 \ldots 01_{2} \times 2^{-126}=2^{-126}+2^{-149}$
- Normalization and implicit 1 are to blame

- Special case: $\mathrm{E}=0, \mathrm{M} \neq 0$ are denormalized numbers

Denorm Numbers

* Denormalized numbers
- No leading 1
- Uses implicit exponent of -126 even though $E=0 \times 00$
* Denormalized numbers close the gap between zero and the smallest normalized number
- Smallest norm: $\pm 1.0 \ldots 0_{\text {two }} \times 2^{-126}= \pm 2^{-126}$
- Smallest denorm: $\pm 0.0 \ldots 01_{\mathrm{two}} \times 2^{-126}= \pm 2^{-149}$
- There is still a gap between zero and the smallest denormalized number

Other Special Cases

* $\mathrm{E}=0 \times F F, \mathrm{M}=0: \pm \infty$
- e.g. division by 0
- Still work in comparisons!
* $\mathrm{E}=0 \times \mathrm{FF}, \mathrm{M} \neq 0$: Not a Number (NaN)
- e.g. square root of negative number, $0 / 0, \infty-\infty$
- NaN propagates through computations
- Value of M can be useful in debugging
* New largest value (besides ∞)?
- E = 0xFF has now been taken!
- $E=0 x F E$ has largest: $1.1 \ldots 1_{2} \times 2^{127}=2^{128}-2^{104}$

Floating Point Encoding Summary

E	M	Meaning
0×00	0	± 0
0×00	non-zero	\pm denorm num
$0 \times 01-0 \times F E$	anything	\pm norm num
$0 \times F F$	0	$\pm \infty$
$0 \times F F$	non-zero	NaN

Distribution of Values

* What ranges are NOT representable?
- Between largest norm and infinity Overflow (Exp too large)
- Between zero and smallest denorm Underflow (Exp too small)
- Between norm numbers? Rounding
* Given a FP number, what's the bit pattern of the next largest representable number?
- What is this "step" when Exp $=0$?
- What is this "step" when Exp $=100$?
* Distribution of values is denser toward zero

Floating Point Operations: Basic Idea

$$
\text { Value }=(-1)^{S} \times \text { Mantissa } \times 2^{\text {Exponent }}
$$

S	E

$\% x+_{f} y=\operatorname{Round}(x+y)$
$* x *_{f} y=\operatorname{Round}\left(x{ }^{*} y\right)$

* Basic idea for floating point operations:
- First, compute the exact result
- Then round the result to make it fit into desired precision:
- Possibly over/underflow if exponent outside of range
- Possibly drop least-significant bits of mantissa to fit into M bit vector

Floating Point Addition Line up the binary points!

$\cdot(-1)^{\mathrm{S} 1} \times \operatorname{Man} 1 \times 2^{\text {Exp } 1}+(-1)^{\mathrm{S} 2} \times$ Man $2 \times 2^{\text {Exp } 2}$

- Assume Exp1 > Exp2

$$
\begin{array}{r}
1.010^{*} 2^{2} \\
+\quad \begin{array}{r}
1.0100^{*} 2^{2} \\
1.000^{*} 2^{-1} \\
? ? ?
\end{array} \frac{0.0010^{*} 2^{2}}{1.0110^{*} 2^{2}}
\end{array}
$$

- Sign S, mantissa Man:
- Result of signed align \& add
- Exponent E: E1

* Adjustments:
- If Man ≥ 2, shift Man right, increment Exp
- If Man <1, shift Man left k positions, decrement Exp by k
- Over/underflow if Exp out of range
- Round Man to fit mantissa precision

Floating Point Multiplication

$*(-1)^{S 1} \times$ Man $1 \times 2^{\operatorname{Exp} 1} \times(-1)^{\mathrm{S} 2} \times$ Man $2 \times 2^{\operatorname{Exp} 2}$

* Exact Result: $(-1)^{S} \times M \times 2^{E}$
- Sign S:

S1 ~S2

- Mantissa Man: Man1 × Man2
- Exponent Exp: Exp1 + Exp2
* Adjustments:
- If Man ≥ 2, shift Man right, increment Exp
- Over/underflow if Exp out of range
- Round Man to fit mantissa precision

Mathematical Properties of FP Operations

* Exponent overflow yields $+\infty$ or $-\infty$
* Floats with value $+\infty,-\infty$, and NaN can be used in operations
- Result usually still $+\infty,-\infty$, or NaN ; but not always intuitive
* Floating point operations do not work like real math, due to rounding
- Not associative: (3.14+1e100)-1e100 ! = 3.14+(1e100-1e100)

0
3.14

- Not distributive: 100*(0.1+0.2) $!=100 * 0.1+100 * 0.2$
30.000000000000003553

30

- Not cumulative
- Repeatedly adding a very small number to a large one may do nothing

Floating point topics

* Fractional binary numbers
* IEEE floating-point standard
* Floating-point operations and rounding
* Floating point in C
* There are many more details that we won't cover - It's a 58 -page standard...

Floating Point in C

* C offers two (well, 3) levels of precision $\begin{array}{lll}\text { float } & 1.0 \mathrm{f} & \text { single precision (32-bit) } \\ \text { double } & 1.0 & \begin{array}{l}\text { double precision (64-bit) } \\ \text { long double }\end{array} \\ 1.0 \mathrm{~L} & \begin{array}{l}\text { ("double double" or quadruple) } \\ \text { precision (64-128 bits) }\end{array}\end{array}$
* \#include <math.h> to get INFINITY and NAN constants
* Equality (==) comparisons between floating point numbers are tricky, and often return unexpected results, so just avoid them!

Floating Point Conversions in C

* Casting between int, float, and double changes the bit representation
- int \rightarrow float
- May be rounded (not enough bits in mantissa: 23)
- Overflow impossible
- int or float \rightarrow double
- Exact conversion (all 32-bit ints representable)
- long \rightarrow double
- Depends on word size (32-bit is exact, 64-bit may be rounded)
- double or float \rightarrow int
- Truncates fractional part (rounded toward zero)
- "Not defined" when out of range or NaN: generally sets to Tmin (even if the value is a very big positive)

Floating Point and the Programmer

```
#include <stdio.h>
int main(int argc, char* argv[]) {
    float f1 = 1.0;
    float f2 = 0.0;
    int i;
    for (i = 0; i < 10; i++)
        f2 += 1.0/10.0;
    printf("0x%08x 0x%08x\n", *(int*)&f1, *(int*)&f2);
    printf("f1 = %10.9f\n", f1);
    printf("f2 = %10.9f\n\n", f2);
    f1 = 1E30;
    f2 = 1E-30;
    float f3 = f1 + f2;
    printf("f1 == f3? %s\n", f1 == f3 ? "yes" : "no" );
    return 0;
}
\(\$ . /\) a.out
\(0 \times 3 f 800000 \quad 0 \times 3 f 800001\)
\(f 1=1.000000000\)
\(f 2=1.000000119\)
\(f 1==~ f 3 ?\) yes
```


Summary

* Floating point approximates real numbers:

- Handles large numbers, small numbers, special numbers
- Exponent in biased notation (bias $=2^{\mathrm{w}-1}-1$)
- Outside of representable exponents is overflow and underflow
- Mantissa approximates fractional portion of binary point
- Implicit leading 1 (normalized) except in special cases
- Exceeding length causes rounding

E	M	Meaning
0×00	0	± 0
0×00	non-zero	\pm denorm num
$0 \times 01-0 \times F E$	anything	\pm norm num
$0 \times F F$	0	$\pm \infty$
$0 \times F F$	non-zero	NaN

An example that applies the IEEE Floating Point concepts to a smaller (8-bit) representation scheme.
These slides expand on material covered today, so while you don't need to read these, the information is "fair game."

Tiny Floating Point Example

S	E	M
1	4	3

* 8-bit Floating Point Representation
- The sign bit is in the most significant bit (MSB)
- The next four bits are the exponent, with a bias of $2^{4-1}-1=7$
- The last three bits are the mantissa
* Same general form as IEEE Format
- Normalized binary scientific point notation
- Similar special cases for 0 , denormalized numbers, NaN, ∞

Dynamic Range (Positive Only)

	S	E	M	Exp	Value	
Denormalized numbers	0	0000	000	-6	0	closest to zero
	0	0000	001	-6	1/8*1/64 $=1 / 512$	
	0	0000	010	-6	$2 / 8 * 1 / 64=2 / 512$	
	0	0000	110	-6	6/8*1/64 $=6 / 512$	
	0	0000	111	-6	7/8*1/64 $=7 / 512$	largest denorm
Normalized numbers	0	0001	000	-6	8/8*1/64 $=8 / 512$	smallest norm
	0	0001	001	-6	9/8*1/64 $=9 / 512$	
	0	0110	110	-1	14/8*1/2 = 14/16	
	0	0110	111	-1	15/8*1/2 = 15/16	closest to 1 below closest to 1 above
	0	0111	000	0	8/8*1 $=1$	
	0	0111	001	0	9/8*1 $=9 / 8$	
	0	0111	010	0	10/8*1 $=10 / 8$	
	0	1110	110	7	14/8*128 = 224	largest norm
	0	1110	111	7	15/8*128 $=240$	
	0	1111	000	n / a	inf	

Special Properties of Encoding

* Floating point zero $\left(0^{+}\right)$exactly the same bits as integer zero
- All bits = 0
* Can (Almost) Use Unsigned Integer Comparison
- Must first compare sign bits
- Must consider $0^{-}=0^{+}=0$
- NaNs problematic
- Will be greater than any other values
- What should comparison yield?
- Otherwise OK
- Denorm vs. normalized
- Normalized vs. infinity

