Floating Point

CSE 351 Summer 2018

Instructor:

Justin Hsia

Teaching Assistants:

Josie Lee Natalie Andreeva

Teagan Horkan

http://xkcd.com/571/

Administrivia

- Lab 1a due tonight at 11:59 pm
 - Only submit pointer.c
 - Make sure to use dlc.py
- Lab 1b due Thursday (7/5)
 - Submit bits.c, lab1reflect.txt
 - Start early and come to office hours!
- Homework 2 due 7/11
 - On Integers, Floating Point, and x86-64

Floating Point Topics

- Fractional binary numbers
- IEEE floating-point standard
- Floating-point operations and rounding
- Floating-point in C

- There are many more details that we won't cover
 - It's a 58-page standard...

IEEE Floating Point

- ◆ IEEE 754
 - Established in 1985 as uniform standard for floating point arithmetic
 - Main idea: make numerically sensitive programs portable
 - Specifies two things: representation and result of floating operations
 - Now supported by all major CPUs
- Driven by numerical concerns
 - Scientists/numerical analysts want them to be as real as possible
 - Engineers want them to be easy to implement and fast
 - In the end:
 - Scientists mostly won out
 - Nice standards for rounding, overflow, underflow, but...
 - Hard to make fast in hardware
 - Float operations can be an order of magnitude slower than integer operations

Floating Point Encoding

- Use normalized, base 2 scientific notation:
 - Value: $\pm 1 \times \text{Mantissa} \times 2^{\text{Exponent}}$
 - Bit Fields: $(-1)^S \times 1.M \times 2^{(E-bias)}$
- Representation Scheme:
 - Sign bit (0 is positive, 1 is negative)
 - Mantissa (a.k.a. significand) is the fractional part of the number in normalized form and encoded in bit vector M
 - Exponent weights the value by a (possibly negative) power of 2 and encoded in the bit vector E

The Exponent Field

- Use biased notation
 - Read E as unsigned, but with bias of $2^{w-1}-1 = 127$
 - Representable exponents roughly ½ positive and ½ negative
 - Exponent 0 (Exp = 0) is represented as $E = 0b \ 0111 \ 1111$
- Why biased?
 - Makes floating point arithmetic easier
 - Makes somewhat compatible with two's complement
- Practice: To encode in biased notation, add the bias then encode in unsigned:
 - $\mathsf{Exp} = 1$ \rightarrow $\mathsf{E} = 0\mathsf{b}$
 - $\mathsf{Exp} = 127 \rightarrow \mathsf{E} = \mathsf{0b}$
 - $Exp = -63 \rightarrow E = 0b$

The Mantissa (Fraction) Field

$$(-1)^{s} \times (1 . M) \times 2^{(E-bias)}$$

- Note the implicit 1 in front of the M bit vector

 - Gives us an extra bit of precision
- Mantissa "limits"
 - Low values near M = 0b0...0 are close to 2^{Exp}
 - High values near M = 0b1...1 are close to 2^{Exp+1}

Peer Instruction Question

- What is the correct value encoded by the following floating point number?

 - Vote at http://PollEv.com/justinh

$$A. + 0.75$$

$$B. + 1.5$$

$$C. + 2.75$$

$$D. + 3.5$$

E. We're lost...

Precision and Accuracy

- Precision is a count of the number of bits in a computer word used to represent a value
 - Capacity for accuracy
- Accuracy is a measure of the difference between the actual value of a number and its computer representation
 - High precision permits high accuracy but doesn't guarantee it. It is possible to have high precision but low accuracy.
 - Example: float pi = 3.14;
 - pi will be represented using all 24 bits of the mantissa (highly precise), but is only an approximation (not accurate)

Need Greater Precision?

Double Precision (vs. Single Precision) in 64 bits

- C variable declared as double
- Exponent bias is now 2^{10} –1 = 1023
- Advantages: greater precision (larger mantissa),

greater range (larger exponent)

Disadvantages: more bits used,

slower to manipulate

Representing Very Small Numbers

- But wait... what happened to zero?
 - Using standard encoding 0x00000000 =
 - Special case: E and M all zeros = 0
 - Two zeros! But at least $0 \times 000000000 = 0$ like integers
- New numbers closest to 0:
 - $a = 1.0...0_2 \times 2^{-126} = 2^{-126}$
 - $b = 1.0...01_2 \times 2^{-126} = 2^{-126} + 2^{-149}$
 - Normalization and implicit 1 are to blame
 - Special case: E = 0, $M \neq 0$ are denormalized numbers

Denorm Numbers

This is extra (non-testable) material

- Denormalized numbers
 - No leading 1
 - Uses implicit exponent of -126 even though E = 0x00
- Denormalized numbers close the gap between zero and the smallest normalized number
 - Smallest norm: $\pm 1.0...0_{two} \times 2^{-126} = \pm 2^{-126}$

So much closer to 0

- Smallest denorm: $\pm 0.0...01_{two} \times 2^{-126} = \pm 2^{-149}$
 - There is still a gap between zero and the smallest denormalized number

Other Special Cases

- \star E = 0xFF, M = 0: $\pm \infty$
 - e.g. division by 0
 - Still work in comparisons!
- * $E = 0xFF, M \neq 0$: Not a Number (NaN)
 - e.g. square root of negative number, 0/0, $\infty-\infty$
 - NaN propagates through computations
 - Value of M can be useful in debugging
- ❖ New largest value (besides ∞)?
 - E = 0xFF has now been taken!
 - E = 0xFE has largest: $1.1...1_2 \times 2^{127} = 2^{128} 2^{104}$

Floating Point Encoding Summary

E	M	Meaning
0×00	0	± 0
0×00	non-zero	± denorm num
0x01 - 0xFE	anything	± norm num
0xFF	0	$\pm \infty$
0xFF	non-zero	NaN

Distribution of Values

- What ranges are NOT representable?
 - Between largest norm and infinity
 - Between zero and smallest denorm
 - Between norm numbers?

Overflow (Exp too large)

Underflow (Exp too small)

Rounding

- Given a FP number, what's the bit pattern of the next largest representable number?
 - What is this "step" when Exp = 0?
 - What is this "step" when Exp = 100?
- Distribution of values is denser toward zero

Floating Point Operations: Basic Idea

Value =
$$(-1)^{\mathbf{S}} \times \mathbf{Mantissa} \times 2^{\mathbf{Exponent}}$$


```
\star x +_f y = Round(x + y)
```

- $* x *_f y = Round(x * y)$
- Basic idea for floating point operations:
 - First, compute the exact result
 - Then round the result to make it fit into desired precision:
 - Possibly over/underflow if exponent outside of range
 - Possibly drop least-significant bits of mantissa to fit into M bit vector

Floating Point Addition Line up the binary points!

- \bullet $(-1)^{S1} \times Man1 \times 2^{Exp1} + (-1)^{S2} \times Man2 \times 2^{Exp2}$
 - Assume Exp1 > Exp2
- ◆ Exact Result: (-1)^S×Man×2^{Exp}
 - Sign S, mantissa Man:
 - Result of signed align & add
 - Exponent E: E1

 $(-1)^{S1} \text{ Man1}$ $+ \qquad \qquad (-1)^{S2} \text{ Man2}$ $(-1)^{S} \text{ Man}$

555

 $1.010*2^2$ $1.0100*2^2$

 $1.0110*2^2$

 $+ 1.000*2^{-1} + 0.0010*2^{2}$

Adjustments:

- If Man ≥ 2, shift Man right, increment Exp
- If Man < 1, shift Man left k positions, decrement Exp by k
- Over/underflow if Exp out of range
- Round Man to fit mantissa precision

Floating Point Multiplication

- \bullet $(-1)^{S1} \times Man1 \times 2^{Exp1} \times (-1)^{S2} \times Man2 \times 2^{Exp2}$
- ❖ Exact Result: (-1)^S×M×2^E
 - Sign S: S1 ^ S2
 - Mantissa Man: Man1 × Man2
 - Exponent Exp: Exp1 + Exp2
- Adjustments:
 - If Man ≥ 2, shift Man right, increment Exp
 - Over/underflow if Exp out of range
 - Round Man to fit mantissa precision

Mathematical Properties of FP Operations

- * Exponent overflow yields $+\infty$ or $-\infty$
- * Floats with value $+\infty$, $-\infty$, and NaN can be used in operations
 - Result usually still $+\infty$, $-\infty$, or NaN; but not always intuitive
- Floating point operations do not work like real math, due to rounding

 - Not distributive:
 100*(0.1+0.2) != 100*0.1+100*0.2
 30.00000000000003553
 30
 - Not cumulative
 - Repeatedly adding a very small number to a large one may do nothing

Floating point topics

- Fractional binary numbers
- IEEE floating-point standard
- Floating-point operations and rounding
- Floating point in C

- There are many more details that we won't cover
 - It's a 58-page standard...

Floating Point in C

C offers two (well, 3) levels of precision

`	, ,	•
float	1.0f	single precision (32-bit)
double	1.0	double precision (64-bit)
long double	1.0L	("double double" or quadruple)
		precision (64-128 bits)

- * #include <math.h> to get INFINITY and NAN
 constants
- Equality (==) comparisons between floating point numbers are tricky, and often return unexpected results, so just avoid them!

Floating Point Conversions in C

- Casting between int, float, and double changes the bit representation
 - int → float
 - May be rounded (not enough bits in mantissa: 23)
 - Overflow impossible
 - int or float → double
 - Exact conversion (all 32-bit ints representable)
 - long → double
 - Depends on word size (32-bit is exact, 64-bit may be rounded)
 - double or float → int
 - Truncates fractional part (rounded toward zero)
 - "Not defined" when out of range or NaN: generally sets to Tmin (even if the value is a very big positive)

Floating Point and the Programmer

```
#include <stdio.h>
                                      $ ./a.out
int main(int argc, char* argv[]) {
                                      0x3f800000 0x3f800001
 float f1 = 1.0;
                                      f1 = 1.000000000
  float f2 = 0.0;
                                      f2 = 1.000000119
  int i;
 for (i = 0; i < 10; i++)
                                      f1 == f3? yes
   f2 += 1.0/10.0i
 printf("0x%08x 0x%08x\n", *(int*)&f1, *(int*)&f2);
 printf("f1 = %10.9f \n", f1);
 printf("f2 = %10.9f\n\n", f2);
  f1 = 1E30;
  f2 = 1E-30;
  float f3 = f1 + f2;
 printf("f1 == f3? %s\n", f1 == f3 ? "yes" : "no" );
 return 0;
```

Summary

Floating point approximates real numbers:

- Handles large numbers, small numbers, special numbers
- Exponent in biased notation (bias = 2^{w-1}-1)
 - Outside of representable exponents is overflow and underflow
- Mantissa approximates fractional portion of binary point
 - Implicit leading 1 (normalized) except in special cases
 - Exceeding length causes rounding

Е	M	Meaning
0x00	0	± 0
0x00	non-zero	± denorm num
0x01 - 0xFE	anything	± norm num
0xFF	0	± ∞
0xFF	non-zero	NaN

BONUS SLIDES

An example that applies the IEEE Floating Point concepts to a smaller (8-bit) representation scheme. These slides expand on material covered today, so while you don't need to read these, the information is "fair game."

Tiny Floating Point Example

- 8-bit Floating Point Representation
 - The sign bit is in the most significant bit (MSB)
 - The next four bits are the exponent, with a bias of $2^{4-1}-1=7$
 - The last three bits are the mantissa
- Same general form as IEEE Format
 - Normalized binary scientific point notation
 - Similar special cases for 0, denormalized numbers, NaN, ∞

Dynamic Range (Positive Only)

	SE	M	Exp	Value
	0 0000	000	-6	0
	0 0000	001	-6	1/8*1/64 = 1/512 closest to zero
Denormalized	0 0000	010	-6	2/8*1/64 = 2/512
numbers	•••			
	0 0000	110	-6	6/8*1/64 = 6/512
	0 0000) 111	-6	7/8*1/64 = 7/512 largest denorm
	0 0001	000	-6	8/8*1/64 = 8/512 smallest norm
	0 0001	001	-6	9/8*1/64 = 9/512
	•••			
	0 0110) 110	-1	14/8*1/2 = 14/16
Normalized	0 0110) 111	-1	15/8*1/2 = 15/16 closest to 1 below
numbers	0 0111	_ 000	0	8/8*1 = 1
Hullibers	0 0111	001	0	9/8*1 = 9/8 closest to 1 above
	0 0111	010	0	10/8*1 = 10/8
	•••			
	0 1110	110	7	14/8*128 = 224
	0 1110) 111	7	15/8*128 = 240 largest norm
	0 1111	_ 000	n/a	inf

Special Properties of Encoding

- Floating point zero (0+) exactly the same bits as integer zero
 - All bits = 0
- Can (Almost) Use Unsigned Integer Comparison
 - Must first compare sign bits
 - Must consider $0^- = 0^+ = 0$
 - NaNs problematic
 - Will be greater than any other values
 - What should comparison yield?
 - Otherwise OK
 - Denorm vs. normalized
 - Normalized vs. infinity