WA UNIVERSITY of WASHINGTON

Integers |l
CSE 351 Summer 2018

Instructor:
Justin Hsia

Teaching Assistants:

L05: Integers Il, Floating Point Intro

CSE351, Summer 2018

Josie Lee Natalie Andreeva Teagan Horkan
8% 208 WHAT. .. UHAT HAPPENED
MY “UNICODE" STANDARD) TNATOR ANGUS KNG @ | |y THOSE THRTY YEARS?
SHoULD GREAT NEWS FOR MAINE — WERE |
MNELJ INE —
PROBLEMS CAUSED BY GETTING A LOBSTER EMI!!! THANKS THNGS GoT
INCOMPATIBLE BINARY | | 2ot 1o roR RecooiziG Te A LIME
TEXT EHCUDNGS IMPACT OF THIS CRIICAL CRUSTACEAN, LIEIRD OKAY?
; IN MAINE PND ACROSS THE COUNTRY, \
YOURS TRULY,
SENATOR &5 Y

http://xkcd.com/1953/

W UNIVERSITY of WASHINGTON LO5: Integers I, Floating Point Intro CSE351, Summer 2018

Administrivia

» Lab 1a due Friday (6/29)
» Lab 1b due next Thursday (7/5)

= Bonus slides at the end of today’s lecture have relevant
examples

» Homework 2 released today, due two Wed from now
(7/11)

= (Can start on Integers, will need to wait for Assembly

w UNIVERSITY of WASHINGTON LO5: Integers I, Floating Point Intro CSE351, Summer 2018

Integers

+» Binary representation of integers
= Unsigned and signed
= Casting in C
+» Consequences of finite width representations

= Overflow, sign extension

+» Shifting and arithmetic operations

WA/ UNIVERSITY of WASHINGTON

L05: Integers Il, Floating Point Intro CSE351, Summer 2018

Arithmetic Overflow

Bits [Unsigned| Signed
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 3 -8
1001 9 -7
1010 10 -6
1011 11 -5
1100 12 -4
1101 13 -3
1110 14 -2
1111 15 -1

+ When a calculation produces a result
that can't be represented In the
current encoding scheme
= |nteger range limited by fixed width

= (Can occur in both the positive and
negative directions

+» C and Java ignore overflow
exceptions

" You end up with a bad value in your
program and no warning/indication...
oops!

w UNIVERSITY of WASHINGTON LO5: Integers I, Floating Point Intro CSE351, Summer 2018

Overflow: Unsigned

» Addition: drop carry bit (—=2N)

15 1111 - > S
+ 2 + 0010 14

1111 0000

13 1110 0001 >
A7 20001 o 1010
1 12 1100 0011 3
- N Unsigned
» Subtraction: borrow (+2%) 1\ 1on 0100 | ,
1 10001 1010 0101
_ 5 _ 0010 10 1001 0110 5
__“ 9 1000 0111 6
iﬁ? 1111 8 7

+2N because of
modular arithmetic

w UNIVERSITY of WASHINGTON LO5: Integers I, Floating Point Intro CSE351, Summer 2018

Overflow: Two’s Complement

» Addition: (+) + (+) = (—) result?

6 0110 B :
+3 + 0011 -2
% 1001 -3
_7 4

1111
1110 0001
1101 0010

1100 Two's 0011

0000

» Subtraction: (=) + (=) = ("‘)?_5 011 complement L4
-7 1001 1010 0101
_ 3 _ 0011 -6 1001 0110 /+5
1000 0111
N 0110 - 2
s N

For signed: overflow If operands have
same sign and result’s sign Is different

W UNIVERSITY of WASHINGTON LO5: Integers I, Floating Point Intro CSE351, Summer 2018

Sign Extension

+» What happens If you convert a signed integral data
type to a larger one?
" e.g. char - short — 1Int - long

+ 4-bit — 8-bit Example:
= Positive Case 4-bit: 0010 = 42
v+ Add0's? 8-bit: 00000010 = 42

= Negative Case?

YA/ UNIVERSITY of WASHINGTON

L05: Integers Il, Floating Point Intro

CSE351, Summer 2018

Peer Instruction Question

+» Which of the following 8-bit numbers has the same
signed value as the 4-bit number 0b11007
= Underlined digit = MSB

= \/ote at http://PollEv.com/justinh

A.
B. Ob 1000 1100
C. Ob 1111 1100

D. Ob 1100 1100
E. We're lost...

W UNIVERSITY of WASHINGTON

L05: Integers Il, Floating Point Intro

CSE351, Summer 2018

Sign Extension

+» Task: Given a w-bit signed integer X, convert it to
w+k-bit signed integer X' with the same value

+» Rule: Add k copies of sign bit
= |et x; be the i-th digit of X in binary

r __
u X — xw_l, ---,xw_l, xW_l, xw_z, ---’xl, xO

\ J
|
k copies of MSB original X
<€ w >
X o 0 o
X' o 0 o o 0 o
«— k ><€ w >

w UNIVERSITY of WASHINGTON LO5: Integers Il, Floating Point Intro CSE351, Summer 2018

Sign Extension Example

+» Convert from smaller to larger integral data types
+» C automatically performs sign extension

= Java too
short Int X = 12345;
int iIXx = (Int) X;
short Int y = -12345;
int 1y = (int) vy;
Var | Decimal Hex Binary
X 12345 30 39 00110000 00111001
1X 12345 | 00 OO0 30 39| 00000000 0O0O0OOOOOO 00110000 00111001
\Y/ -12345 CF C7 11001111 11000111
1y -12345| FF FF CF C7| 11111111 11111111 11001111 11000111

10

w UNIVERSITY of WASHINGTON LO5: Integers Il, Floating Point Intro

Integers

+» Binary representation of integers
= Unsigned and signed
= Casting in C
+» Consequences of finite width representations

= Qverflow, sign extension

+» Shifting and arithmetic operations

CSE351, Summer 2018

11

W UNIVERSITY of WASHINGTON LO5: Integers Il, Floating Point Intro

Shift Operations

» Left shift (X<<n) bit vector X by n positions

" Throw away (drop) extra bits on left
= Fill with Os on right

» Right shift (x>>n) bit-vector X by n positions
" Throw away (drop) extra bits on right

" |ogical shift (for unsigned values)
 Fill with Os on left
" Arithmetic shift (for signed values)

- Replicate most significant bit on left
- Maintains sign of X

CSE351, Summer 2018

12

WA UNIVERSITY of WASHINGTON

L05: Integers Il, Floating Point Intro

Shift Operations

» Left shift (x<<n)
= Fill with Os on right logical
+ Right shift (x>>n) eriimetie
" Logical shift (for unsigned values)
- Fill with Os on left
" Arithmetic shift (for signed values) ogical:
- Replicate most significant bit on left ithmetic.

+» Notes:

" Shifts by n<0 or n=>w (bit width of x) are undefined

CSE351, Summer 2018

0010

0010

X<<3

0001

0000

X>>2

0000

1000

X>>2

0000

1000

X

1010

0010

X<<3

0001

0000

X>>2

0010

1000

X>>2

1110

1000

" In C: behavior of >> is determined by compiler

. In gcc / C lang, depends on data type of X (signed/unsigned)
= In Java: logical shift is >>> and arithmetic shift is >>

13

W UNIVERSITY of WASHINGTON

L05: Integers Il, Floating Point Intro

Shifting Arithmetic?

+» What are the following computing?

" X>>N
- Ob 0100 >> 1
- Ob 0100 >> 2
« Divide by 2"

" X<<n

. 0
. 0

0D 0001 << 1
D 0001 << 2

- V

ultiply by 2"

+» Shifting i1s faster than general multiply and divide

operations

Ob 0010
Ob 0001

Ob 0010
Ob 0100

CSE351, Summer 2018

W UNIVERSITY of WASHINGTON

Left Shift Arithmetic 8-bit Example

+» No difference In left shift operation for unsigned and
signed numbers (just manipulates bits)
= Difference comes during interpretation: x*2"7

Sighed Unsighed

X = 25; 00011001 = 25 25
l1=x<<2; 0001100100 = 100 100
| 2=x<<3; 00011001000 = _-56 200

signed overflow

L3=x<<4: 000110010000 = =112 144
_—

unsigned overflow

15

WA UNIVERSITY of WASHINGTON

Right Shift Arithmetic 8-bit Example

+» Reminder: C operator >> does logical shift on
unsigned values and arithmetic shift on signed values
= | ogical Shift: x/2n7?

xu = 240u; 11110000 = 240
Rlu=xu>>3; 00011110000 = 30
R2u=xu>>5; 0000011110000 = V4

=

rounding (down)

16

w UNIVERSITY of WASHINGTON LO5: Integers I, Floating Point Intro CSE351, Summer 201

Right Shift Arithmetic 8-bit Example

+» Reminder: C operator >> does logical shift on
unsigned values and arithmetic shift on signed values
= Arithmetic Shift: x/2"7

Xs = =-16; 11110000 = -16
Rls=xu>>3; 11111110000 = =2
R2s=xu>>5; 1111111110000 = -1

=

rounding (down)

17

W UNIVERSITY of WASHINGTON

Peer Instruction Question

L05: Integers Il, Floating Point Intro

CSE351, Summer

-

For the following expressions, find a value of signed char
X, If there exists one, that makes the expression TRUE.
_Compare with your neighbor(s)!

~N

2018

+» Assume we are using 8-bit arithmetic:

X == (unsigned char) x
X >= 128U
X 1= (X>>2)<<2

X == =X
- Hint: there are two solutions

(X < 128U) && (x > Ox3F)

18

WA/ UNIVERSITY of WASHINGTON LO5: Integers II, Floating Point Intro

Unsigned Multiplication in C

CSE351, Summer 2018

u
Operands: «
w bits v
True Product: U-v 500
2w bits
Discard w bits: UMult,(u, v)
w bits

+» Standard Multiplication Function
= |gnores high order w bits

+» Implements Modular Arithmetic
= UMult, (v, v) = u-v mod 2%

19

WA UNIVERSITY of WASHINGTON LO5: Integers II, Floating Point Intro

Multiplication with shift and add

» Operation u<<k gives u*2k
= Both signed and unsigned

CSE351, Summer 2018

Operands: w bits) k .

* 2k Q (X X) Q j Q (X X) (HQ
True Product: w + k bits u - 2k oo 0] e« [0]O]
Discard k bits: w bits UMult,(u, 25) [eee 0 eee [0]0

TMult, (v, 2)

+» Examples:
= u<<3 == u * 8
"U<<S - U3 == u * 24
= Most machines shift and add faster than multiply
- Compiler generates this code automatically

20

W UNIVERSITY of WASHINGTON LO5: Integers I, Floating Point Intro CSE351, Summer 2018

Number Representation Revisited

+» What can we represent in one word?
= Signed and Unsigned Integers
" Characters (ASCII)
= Addresses
+» How do we encode the following:
" Real numbers (e.g. 3.14159)
= Very large numbers (e.g. 6.02x1023) FIOating

= Very small numbers (e.g. 6.626x10-34) B Point
" Special numbers (e.g. oo, NaN)

21

w UNIVERSITY of WASHINGTON LO5: Integers I, Floating Point Intro CSE351, Summer 2018

Floating Point Topics

+» Fractional binary numbers
EEE floating-point standard
+ Floating-point operations and rounding

+» Floating-point in C

+» T here are many more details that we won't cover
= |t's a b8-page standard...

22

W UNIVERSITY of WASHINGTON LO5: Integers I, Floating Point Intro CSE351, Summer 2018

Representation of Fractions

“Binary Point,” like decimal point, signifies boundary
between integer and fractional parts:

Example 6-bit XX.YYVYY
representation: // f\\\

20 21 52 53
» Example: 10.1010, = 1x2t + 1x21 4+ 1x23 = 2.625,,

+» Binary point numbers that match the 6-bit format
above range from 0 (00.0000,) to 3.9375 (11.1111,)

23

w UNIVERSITY of WASHINGTON LO5: Integers I, Floating Point Intro CSE351, Summer 2018

Scientific Notation (Decimal)

mantissell exponent
[| /
6.02,, x 1023

decimal point radix (base)

« Normalized form: exactly one digit (non-zero) to left
of decimal point

= Alternatives to representing 1/1,000,000,000
= Normalized: 1.0x10°
= Not normalized: 0.1x10%10.0x1010

24

w UNIVERSITY of WASHINGTON LO5: Integers I, Floating Point Intro CSE351, Summer 2018

Scientific Notation (Binary)

mantissa
el /exponent
1.01, x 2

binary point radix (base)

+» Computer arithmetic that supports this called floating
point due to the “floating” of the binary point

" Declare such variable in C as Float (or double)

25

W UNIVERSITY of WASHINGTON LO5: Integers I, Floating Point Intro CSE351, Summer 2018

Scientific Notation Translation

+» Convert from scientific notation to binary point

= Shift the decimal until the exponent disappears
. Example: 1.011,x2* = 10110, = 22,,
- Example: 1.011,x22 =0.01011, = 0.34375,,

%+ Convert from binary point to normalized scientific notation

= Distribute exponent until binary point is to the right of a single digit
. Example: 1101.001, = 1.101001,x23

>

>

L)

*

Practice: Convert 11.375,, to normalized binary scientific
notation

Practice: Convert 1/5 to binary

D)

>

26

W UNIVERSITY of WASHINGTON LO5: Integers I, Floating Point Intro CSE351, Summer 2018

Summary

» Sign and unsigned variables in C
= Bit pattern remains the same, just interpreted differently

= Strange things can happen with our arithmetic when we
convert/cast between sign and unsigned numbers

- Type of variables affects behavior of operators (shifting,
comparison)

+ We can only represent so many numbers in w bits
= \WWhen we exceed the limits, arithmetic overflow occurs

)

= Sign extension tries to preserve value when expanding

+» Shifting is a useful bitwise operator
" Right shifting can be arithmetic (sign) or logical (0)
= Can be used in multiplication with constant or bit masking

27

w UNIVERSITY of WASHINGTON LO5: Integers Il, Floating Point Intro CSE351, Summer 2018

BONUS SLIDE

Some examples of using shift operators in combination
with bitmasks, which you may find helpful for Lab 1.
We will try to cover these In lecture or section If we
have the time.

+ Extract the 2" most significant byte of an Int
+» Extract the sign bit of a signed Int
% Conditionals as Boolean expressions

28

W UNIVERSITY of WASHINGTON

L05: Integers Il, Floating Point Intro CSE351, Summer 2018

Using Shifts and Masks

/
0’0

Extract the 2" most significant byte of an Int:;
= First shift, then mask: (x>>16) & OXFF

X 00000001[00000010/00000011 00000100
Xx>>16 00000000 00000000 0000000 00000010
OXFF 00000000 00000000 00000000 11111111

(x>>16) & OxFF

00000000 00000000 00000000 OO0O00010

= Or first mask, then shift: (x & OXFFO000)>>16

X

00000001 00000010 00000011 OOO0O0100

OxFFOO000

00000000 11111111 OOO0O0000 00000000

X & OxFFOO000

00000000|00000010{00000000 OOOOO0O0O0

(x&0XFF0000)>>16

00000000 00000000 00000000 T00000010

29

WA UNIVERSITY of WASHINGTON

L05: Integers Il, Floating Point Intro CSE351, Summer 2018

Using Shifts and Masks

+» Extract the sign bit of a signed Int:

= First shift, then mask: (x>>31) & Ox1
- Assuming arithmetic shift here, but this works in either case

- Need mask to clear 1s possibly shifted in

X 0DO00001 00000010 00000011 00000100
x>>31 00000000 00000000 00000000 0000000
Ox1 00000000 00000000 00000000 00000001

(x>>31) & 0x1

00000000 00000000 00000000 OOOOO0O0O0

X 1000001 00000010 00000011 00000100
x>>31 11111111 11111111 11111111 11111711
Ox1 00000000 00000000 00000000 00000001

(x>>31) & 0x1

00000000 00000000 00000000 00000001

30

W UNIVERSITY of WASHINGTON LO5: Integers I, Floating Point Intro CSE351, Summer 2018

Using Shifts and Masks

+» Conditionals as Boolean expressions
= For Int X, what does (X<<31)>>31 do~

x=11123 00000000 00000000 00000000 00000001
x<<31 10000000 00000000 OOOO0O0O0OO 00000000
(x<<31)>>31 |11111111 1111171711 11111111 11111111
X 00000000 00000000 00000000 OOOOOO0O0
Ix<<31l 00000000 00000000 00000000 OOOO0O0O00
(1x<<31)>>31 |00000000 00000000 00000000 00000000

= Can use In place of conditional:
- In C: 1F(X) {a=y;} else {a=z;} equivalent to a=x?y:z,
- a=(((x<<31)>>31D)&y) | ((('x<<31)>>31)&z);

31

