
CSE351, Spring 2018S7: Blocking

Caches

Making them work for you

CSE351, Spring 2018S7: Blocking

Optimizations for the Memory Hierarchy

❖ Write code that has locality!
▪ Spatial: access data contiguously
▪ Temporal: make sure access to the same data is not too far

apart in time

❖ How can you achieve locality?
▪ Adjust memory accesses in code (software) to improve miss

rate (MR)
• Requires knowledge of both how caches work as well as your system’s

parameters

▪ Proper choice of algorithm
▪ Loop transformations

2

CSE351, Spring 2018S7: Blocking

Example: Matrix Multiplication

3

C

= ×

A B

ai* b*j

cij

CSE351, Spring 2018S7: Blocking

Matrices in Memory

❖ How do cache blocks fit into this scheme?
▪ Row major matrix in memory:

4

Cache
blocks

COLUMN of matrix (blue) is spread
among cache blocks shown in red

CSE351, Spring 2018S7: Blocking

Naïve Matrix Multiply

move along rows of A
for (i = 0; i < n; i++)
move along columns of B
for (j = 0; j < n; j++)

EACH k loop reads row of A, col of B
Also read & write c(i,j) n times
for (k = 0; k < n; k++)

c[i*n+j] += a[i*n+k] * b[k*n+j];

5

C(i,j) A(i,:)
B(:,j)

C(i,j)

CSE351, Spring 2018S7: Blocking

Cache Miss Analysis (Naïve)

❖

6

Ignoring
matrix c

CSE351, Spring 2018S7: Blocking

Cache Miss Analysis (Naïve)

❖

7
8 doubles wide

Ignoring
matrix c

CSE351, Spring 2018S7: Blocking

Cache Miss Analysis (Naïve)

❖

8

Ignoring
matrix c

once per element

CSE351, Spring 2018S7: Blocking

Linear Algebra to the Rescue (1)

❖ Can get the same result of a matrix multiplication by
splitting the matrices into smaller submatrices
(matrix “blocks”)

❖ For example, multiply two 4×4 matrices:

9

This is extra
(non-testable)

material

CSE351, Spring 2018S7: Blocking

Linear Algebra to the Rescue (2)

10

C11 C12 C13 C14

C21 C22 C23 C24

C31 C32 C43 C34

C41 C42 C43 C44

A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43
A14

4

B11 B12 B13 B14

B21 B22 B23 B24

B32 B32 B33 B34

B41 B42 B43 B44

This is extra
(non-testable)

material

CSE351, Spring 2018S7: Blocking

Blocked Matrix Multiply

❖

11

move by rxr BLOCKS now
for (i = 0; i < n; i += r)
for (j = 0; j < n; j += r)
for (k = 0; k < n; k += r)
block matrix multiplication
for (ib = i; ib < i+r; ib++)
for (jb = j; jb < j+r; jb++)
for (kb = k; kb < k+r; kb++)
c[ib*n+jb] += a[ib*n+kb]*b[kb*n+jb];

CSE351, Spring 2018S7: Blocking

Cache Miss Analysis (Blocked)

❖

12

Ignoring
matrix c

CSE351, Spring 2018S7: Blocking

Cache Miss Analysis (Blocked)

❖

13

Ignoring
matrix c

CSE351, Spring 2018S7: Blocking

❖

Cache Miss Analysis (Blocked)

14

Ignoring
matrix c

nr/ 4 ✕ (n/ r)2 = n3/ (4r)

CSE351, Spring 2018S7: Blocking

Cache-Friendly Code

❖ Programmer can optimize for cache performance
▪ How data structures are organized
▪ How data are accessed

• Nested loop structure
• Blocking is a general technique

❖ All systems favor “cache-friendly code”
▪ Getting absolute optimum performance is very platform

specific
• Cache size, cache block size, associativity, etc.

▪ Can get most of the advantage with generic code
• Keep working set reasonably small (temporal locality)
• Use small strides (spatial locality)
• Focus on inner loop code

16

	Caches
	Optimizations for the Memory Hierarchy
	Example: Matrix Multiplication
	Matrices in Memory
	Naïve Matrix Multiply
	Cache Miss Analysis (Naïve)
	Cache Miss Analysis (Naïve)
	Cache Miss Analysis (Naïve)
	Linear Algebra to the Rescue (1)
	Linear Algebra to the Rescue (2)
	Blocked Matrix Multiply
	Cache Miss Analysis (Blocked)
	Cache Miss Analysis (Blocked)
	Cache Miss Analysis (Blocked)
	Cache-Friendly Code

