
CSE	351	Section	7	–	Caches	
Hi	there!	Welcome	back	to	section,	we’re	happy	that	you’re	here	J	

Accessing	a	Cache	(Hit	or	Miss?)	
Assume	the	following	caches	all	have	block	size	𝐾 = 4	and	are	in	the	current	state	shown	(you	can	ignore	"—").			
All	values	are	shown	in	hex.		Tag	fields	are	NOT	padded,	while	bytes	of	the	cache	blocks	are	shown	in	full.	The	word	
size	for	the	machine	with	these	caches	is	12	bits	(i.e.	addresses	are	12	bits	long)	

Direct-Mapped:	
Set	 Valid	 Tag	 B0	 B1	 B2	 B3	 Set	 Valid	 Tag	 B0	 B1	 B2	 B3	 	 	
0	 1 15 63 B4 C1 A4 8	 0 — — — — — 	 Offset	bits: 2
1	 0 — — — — — 9	 1 0 01 12 23 34
2	 0 — — — — — A	 1 1 98 89 CB BC
3	 1 D DE AF BA DE B	 0 1E 4B 33 10 54 	 Index	bits: 4
4	 0 — — — — — C	 0 — — — — —
5	 0 — — — — — D	 1 11 C0 04 39 AA
6	 1 13 31 14 15 93 E	 0 — — — — — 	 Tag	bits:	6
7	 0 — — — — — F	 1 F FF 6F 30 0

	
	 Hit	or	Miss?	 Data	returned	
a) Read	1	byte	at	0x7AC	 Miss	 —	

b) Read	1	byte	at	0x024	 Hit	 0x01	

c) Read	1	byte	at	0x99F	 Miss	 —	
	

2-way	Set	Associative:	
Set	 Valid	 Tag	 B0	 B1	 B2	 B3	 Set	 Valid	 Tag	 B0	 B1	 B2	 B3	 	 	
0	 0 — — — — — 0	 0 — — — — — 	 Offset	bits: 2
1	 0 — — — — — 1	 1 2F 01 20 40 03
2	 1 3 4F D4 A1 3B 2	 1 0E 99 09 87 56
3	 0 — — — — — 3	 0 — — — — — 	 Index	bits: 3
4	 0 6 CA FE F0 0D 4	 0 — — — — —

5	 1 21 DE AD BE EF 5	 0 — — — — —
6	 0 — — — — — 6	 1 37 22 B6 DB AA 	 Tag	bits:	7
7	 1 11 00 12 51 55 7	 0 — — — — —

	
	 Hit	or	Miss?	 Data	returned	
a) Read	1	byte	at	0x435	 Hit	 0xAD	

b) Read	1	byte	at	0x388	 Miss	 —	
c) Read	1	byte	at	0x0D3	 Miss	 —	

	
	
	
	
	
	
	
	
	

Fully	Associative:	
Set	 Valid	 Tag	 B0	 B1	 B2	 B3	 Set	 Valid	 Tag	 B0	 B1	 B2	 B3	 	 	
0	 1 1F4 00 01 02 03 0	 0 — — — — — 	 Offset	bits: 2
0	 0 — — — — — 0	 1 AB 02 30 44 67
0	 1 100 F4 4D EE 11 0	 1 34 FD EC BA 23
0	 1 77 12 23 34 45 0	 0 — — — — — 	 Index	bits: 0
0	 0 — — — — — 0	 1 1C6 00 11 22 33
0	 1 101 DA 14 EE 22 0	 1 45 67 78 89 9A
0	 0 — — — — — 0	 1 1 70 00 44 A6 	 Tag	bits:	10
0	 1 16 90 32 AC 24 0	 0 — — — — —

	
	 Hit	or	Miss?	 Data	returned	
a) Read	1	byte	at	0x1DD	 Hit	 0x23	

b) Read	1	byte	at	0x719	 Hit	 0x11	

c) Read	1	byte	at	0x2AA	 Miss	 —	
	
Code	Analysis	
Consider	the	following	code	that	accesses	a	two-dimensional	array	(of	size	64×64	ints).			
Assume	we	are	using	a	direct-mapped,	1	KiB	cache	with	16	B	block	size.	
 for (int i = 0; i < 64; i++)
 for (int j = 0; j < 64; j++)
 array[i][j] = 0; // assume &array = 0x600000

a) What	is	the	miss	rate	of	the	execution	of	the	entire	loop?	
	

Every	block	can	hold	4	ints	(16B/4B	per	int),	so	we	will	need	to	pull	a	new	block	from	memory	every	4	
accesses	of	the	array.	This	means	this	miss	rate	is		 e	fghij	kil	mnh

op	fghij	kil	fqrst
= 	 o	fqrst

e	mnhj
	=	0.25	=	25%	

	
b) What	code	modifications	can	change	the	miss	rate?		Brainstorm	before	trying	to	analyze.	

	
Possible	answers:	switch	the	loops	(i.e.	make	j	the	outer	loop	and	i	the	inner	loop),	switch	j	and	i	in	the	
array	access,	make	the	array	a	different	type	(e.g.	char[][],	long[][],	etc.),	make	array	an	array	of	Linked	
Lists	or	a	2-level	array,	etc.	

	
c) What	cache	parameter	changes	(size,	associativity,	block	size)	can	change	the	miss	rate?	

	
Let’s	consider	each	of	the	three	parameters	individually.	
	
First,	let’s	consider	modifying	the	size	of	the	cache.	Will	it	change	the	miss	rate?	
No,	it	doesn't	matter	how	big	the	cache	is	in	this	case	(if	the	block	size	doesn't	change).	We	will	still	be	
pulling	the	same	amount	of	data	each	miss,	and	we	will	still	have	to	go	to	memory	every	time	we	exhaust	
that	data	
	
Next,	let’s	consider	modifying	the	associativity	of	the	cache.	Will	it	change	the	miss	rate?	
No,	this	is	helpful	if	we	want	to	reduce	conflict	misses,	but	since	the	data	we're	accessing	is	all	in	contiguous	
memory	(thanks	arrays!),	booting	old	data	to	replace	it	with	new	data	isn't	an	issue.	
	
Finally,	let’s	consider	modifying	the	block	size	of	the	cache.	Will	it	change	the	miss	rate?	
Yes,	bigger	blocks	mean	we	pull	bigger	chunks	of	contiguous	elements	in	the	array	every	time	we	have	a	
miss.	Bigger	chunks	at	a	time	means	fewer	misses	down	the	line.	Likewise,	smaller	blocks	increase	the	

frequency	with	which	we	need	to	go	to	memory	(think	back	to	the	calculations	we	did	in	part	(a)	to	see	
why	this	is	the	case)	
	
So,	in	conclusion,	changing	block	size	can	change	the	miss	rate.	Changing	size	or	associativity	will	NOT	
change	the	miss	rate.	
	
NOTE:	Remember	that	the	results	we	got	were	for	this	specific	example.	There	are	some	code	examples	in	
which	changing	the	size	or	associativity	of	the	cache	will	change	the	miss	rate.	

	
	
Cache	ya	later!	
	
Suppose	we	have	a	1	KiB	direct-mapped	cache	with	256	B	blocks.		
	

a) The	code	snippet	below	loops	through	a	character	array.	Give	the	value	of	LEAP	that	results	in	a	hit	rate	of	
15/16.	
	
#define ARRAY_SIZE 8192
char string[ARRAY_SIZE]; // &string = 0x8000
for(i = 0; i < ARRAY_SIZE; i += LEAP) {

 string[i] |= 0x20; // to lower
}

	
	

We	read	then	write	each	address.	For	a	15/16	hit	rate,	we	must	access	8	bytes	per	block:	one	miss	on	the	
first	read,	followed	by	15	hits	for	subsequent	reads	and	writes	(note	that	using	|=	means	we	read,	then	
write,	each	byte).	Since	blocks	are	256	bytes	and	chars	are	1	byte,	LEAP	=	��p

�
= 32.	

	
b) For	the	loop	shown	in	part	(a),	let	LEAP	=	64.	Which	ONE	of	the	following	changes	would	increase	the	hit	

rate	in	the	cache?	
	

	
Increase	Block	Size	 	 Increase	Cache	Size	 	 Increase	LEAP	

	 	 	 	
	 	 	

Increasing	the	block	size	will	create	more	hits	per	block.	Increasing	the	total	cache	size	will	not	change	the	
hit	rate	since	we	still	only	pull	in	the	same	number	of	bytes	per	miss.		

	
c) For	each	of	the	following	cache	access	parameters,	calculate	the	AMAT.	Please	simplify	and	include	units!	

	
$	Hit	Time	 $	Miss	Rate	 MEM	Hit	Time	

2	ns	 40%	 400	ns	
	
	
	
	
	
	

AMAT	=	(hit	time)	+	(miss	rate)(miss	time)	–	note	that	you	always	pay	for	the	hit	time,	even	it	you	miss	in	
the	cache,	because	the	lookup	must	be	done	regardless.	You	only	pay	for	miss	time	when	you	miss	in	the	
cache.	2 + (0.4)(400) = 162	

32	

162	ns	

