
CSE	351	Section	6	Solutions	–	Arrays	and	Structs	
Welcome	back	to	section,	we’re	happy	that	you’re	here		

	
We	have	a	two‐dimensional	matrix	of	integer	data	of	size	ܯ	rows	and	ܰ	columns.		We	are	considering	3	different	
representation	schemes:	

1ሻ 2‐dimensional	array	int array2D[][],	 	 	 //	M*N	array	of	ints		
2ሻ 2‐level	array	int* array2L[],	and			 	 	 //	M	array	of	int	arrays	
3ሻ array	of	linked	lists	struct node* arrayLL[].	 	 //	M	array	of	linked	lists	ሺstruct	nodeሻ	

Consider	the	case	where	ܯ ൌ 3	and	ܰ ൌ 4.		The	declarations	are	given	below:	
2-dimensional array: 2-level array: Array of linked lists: 
int array2D[3][4]; int r0[4], r1[4], r2[4]; 

int* array2L[] = {r0,r1,r2}; 
struct node { 
 int col, num; 
 struct node* next; 
}; 
struct node* arrayLL[3]; 
// code to build out LLs 

For	example,	the	diagrams	below	correspond	to	the	matrix	
0 0
െ4 0
0 0

1 0
5 0
0 0

൩	for	array2L	and	arrayLL:	

	
	
aሻ Fill	in	the	following	comparison	chart:	
	 2‐dim	array	 2‐level	array	 Array	of	LLs:	
Overall	Memory	Used	 M*N*sizeofሺintሻ	ൌ	48	B	 M*N*sizeofሺintሻ		

M*sizeofሺint	*ሻ	ൌ	72	B	
M*sizeofሺstruct	node	*ሻ		
M*N*sizeofሺstruct	nodeሻ	
ൌ	216	B	

Largest	guaranteed	
continuous	chunk	of	
memory	

The	whole	array	ሺ48	Bሻ	 The	array	of	pointers		
ሺ24	Bሻ		row	array	ሺ16	Bሻ	

The	array	of	pointers	ሺ24	
Bሻ		struct	ሺ16	Bሻ	

Smallest	guaranteed	
continuous	chunk	of	
memory	

The	whole	array	ሺ48	Bሻ	 Each	row	array	ሺ16	Bሻ	 Each	struct	node	ሺ16	Bሻ	

Data	type	returned	by:	 array2D[1] 
int * 

array2L[1] 
int * 

arrayLL[1] 
struct node * 

Number	of	memory	accesses	
to	get	int	in	the	BEST	case	

1	 2	 First	node	in	LL:		2	

Number	of	memory	accesses	
to	get	int	in	the	WORST	
case	

1	 2	 Last	node	in	LL:		5	
ሺwe	have	to	read	nextሻ	

	
bሻ Sam	Student	claims	that	since	our	arrays	are	relatively	small	ሺܰ ൏ 256ሻ,	we	can	save	space	by	storing	the	col	

field	as	a	char	in	struct node.		Is	this	correct?		If	so,	how	much	space	do	we	save?		If	not,	is	this	an	example	
of	internal	or	external	fragmentation?	

No.		Alignment	requirement	of	ܭ ൌ 4	for		int num	leaves	3	bytes	of	internal	fragmentation	between	col	and	
num.	


