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CSE 351 Section 4 – C and x86-64 Assembly 
Hi there! Welcome back to section, we’re happy that you’re here ☺ 

What is Assembly? 

Assembly language is a human-readable representation of machine code instructions (generally a one-to-one 
correspondence).  Assembly is machine-specific because the computer architecture and hardware are designed to 
execute a particular machine code instruction set. 

x86-64 

x86-64 is the primary 64-bit instruction set architecture (ISA) used by modern personal computers.  It was 
developed by Intel and AMD and its 32-bit predecessor is called IA32.  x86-64 is designed for complex instruction 
set computing (CISC), generally meaning it contains a larger set of more versatile and more complex instructions. 

For this course, we will utilize only a small subset of x86-64’s instruction set and omit floating point instructions. 

x86-64 Instructions 

The subset of x86-64 instructions that we will use in this course take either one or two operands, usually 
operation operand1, operand2.  Operands can be: 

• Immediate:  constant integer data (e.g.  $0x400, $-533) or an address/label (e.g. Loop, main) 

• Register:  use the data stored in one of the 16 general purpose registers or subsets (e.g. %rax, %edi) 

• Memory:  use the data at the memory address specified by the addressing mode  D(Rb,Ri,S) 

The operation determines the effect of the operands on the processor state and has a suffix (“b” for byte, “w” for 
word, “l” for long, “q” for quad word) that determines the bit width of the operation.  Sometimes the operation 
size can be inferred from the operands, so the suffix is omitted for brevity. 

Control Flow and Condition Codes 

Internally, condition codes (Carry, Zero, Sign, Overflow) are set based on the result of the previous operation.  The 
j* and set* families of instructions use the values of these “flags” to determine their effects. 

An indirect jump is specified by adding an asterisk (*) in front of a memory operand and causes your program 
counter to load the address stored at the computed address. 

Procedure Basics 

The instructions push, pop, call, and ret move the stack pointer (%rsp) automatically. 

%rax is used for the return value and the first six arguments go in %rdi, %rsi, %rdx, %rcx, %r8, %r9 (“Diane’s 

Silk Dress Cost $89”). 
 
 

Exercises: 
1. [CSE351 Au14 Midterm]  What does the following code return? 

movl  (%rdi), %eax          # %rdi -> x 

leal  (%eax,%eax,2), %eax   # %rax -> r 

addl  %eax, %eax 

andl  %esi, %eax            # %rsi -> y 

subl  %esi, %eax 

ret 
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2. [CSE351 Au15 Midterm]  Convert the following C function into x86-64 assembly code.  You are not being 
judged on the efficiency of your code – just the correctness. 

long happy(long *x, long y, long z) { 

    if (y > z) 

        return z + y; 

    else 

        return *x; 

} 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3. Write an equivalent C function for the following x86 code: 

mystery: 

    testl   %edx, %edx 

    js      .L3 

    cmpl    %esi, %edx 

    jge     .L3 

    movslq  %edx, %rdx 

    movl    (%rdi,%rdx,4), %eax 

    ret 

.L3: 

    movl    $0, %eax 

    ret 
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4. [Adapted from CSE351 Wi16 Midterm]  Suppose before the assembly below is executed, the value of %rsp is 
0xFFFF8888. 

0x00002f:   pushq $7 

0x000031:   pushq $5 

0x000033:   addq  $2, 8(%rsp) 

0x000039:   callq someOtherFunction 

0x00003e:   ... 

Immediately after the callq instruction executes: 

a. What is the value of %rsp in hexadecimal? 

 

 

b. Fill in the contents of the stack from %rsp (your answer to part a) up to (but not including) 
0xFFFF8888.  Fill in the boxes below using hexadecimal.  You may not need all rows. 

 

Address Data 

0xFFFF8888 <unknown> 

  

  

  

  

  

 
 
 
 
 
 
 
 


