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CSE 351 Section 3 – Integers, FP, and Assembly 

Welcome back to section! We’re happy that you’re here ☺  

Signed Integers with Two’s Complement 
Two’s complement is the standard for representing signed integers: 

● The most significant bit (MSB) has a negative value; all others have 
positive values (same as unsigned) 

● Binary addition is performed the same way for signed and unsigned  
● The bit representation for the negative (additive inverse) of a two’s 

complement number can be found by: 
  flipping all the bits and adding 1 (i.e. −� =~� + 1). 

The “number wheel” showing the relationship between 4-bit numerals and their Two’s Complement 
interpretations is shown on the right: 

● The largest number is 7 whereas the smallest number is -8 
● There is a nice symmetry between numbers and their negative counterparts except for -8  

Exercises:  (assume 8-bit integers) 
1) How do you represent (if possible) the following numbers:  39, -39, 127? Answer in binary 

Unsigned: 

 39: 0010 0111 

-39: Impossible 

127: 0111 1111 

Two’s Complement: 

 39: 0010 0111 

-39: 1101 1001 

127: 0111 1111 
2) Compute the following sums in binary using your Two’s Complement answers above.  Answer in unsigned hex 

a. 39  -> 0b 0 0 1 0 0 1 1 1 
+(-39) -> 0b 1 1 0 1 1 0 0 1 
0x 0 0 <- 0b 0 0 0 0 0 0 0 0 

b. 127 -> 0b 0 1 1 1 1 1 1 1 
+ (-39)-> 0b 1 1 0 1 1 0 0 1 
0x 5 8 <- 0b 0 1 0 1 1 0 0 0 

c. 39  -> 0b 0 0 1 0 0 1 1 1 
+(-127)-> 0b 1 0 0 0 0 0 0 1 
0x A 8 <- 0b 1 0 1 0 1 0 0 0 

d. 127 -> 0b 0 1 1 1 1 1 1 1 
+   39 -> 0b 0 0 1 0 0 1 1 1 
0x A 6 <- 0b 1 0 1 0 0 1 1 0 

3) Interpret each of your answers above and indicate whether or not overflow has occurred. 
a. 39 + (-39) 
Unsigned: 0 overflow 

Two’s Complement: 0 no overflow 

b. 127 + (-39) 
Unsigned: 88 overflow 

Two’s Complement: 88 no overflow 
c. 39 + (-127) 
Unsigned: 168 overflow 
Two’s Complement: -88 no overflow 

d. 127 + 39 
Unsigned: 166 no overflow 

Two’s Complement: -90 overflow 

Goals of Floating Point 
Representation should include:  [1] a large range of values (both very small and very large numbers),   [2] a high 
amount of precision, and  [3] real arithmetic results (e.g.  ∞ and NaN). 
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IEEE 754 Floating Point Standard 
The value of a real number can be represented in scientific binary notation as:   

Value = (-1)sign × Mantissa2 × 2Exponent = (-1)S × 1.M2 × 2E-bias 
The binary representation for floating point values uses three fields: 

● S:  encodes the sign  of the number (0 for positive, 1 for negative) 
● E:  encodes the exponent  in biased notation with a bias of 2w-1-1 
● M:  encodes the mantissa (or significand, or fraction) – stores the fractional portion, but does not include 

the implicit leading 1.  
 

 S E M 
float 1 bit 8 bits 23 bits 

double 1 bit 11 bits 52 bits 
 
How a float is interpreted depends on the values in the exponent and mantissa fields: 

E M Meaning 
0 anything denormalized number (denorm) 

1-254 anything normalized number 
255 zero infinity (∞) 
255 nonzero not-a-number (NaN) 

 
Exercises: 
4) Convert the decimal number 1.25 into single precision floating point representation: 
 

0 0 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 
5) What are the decimal values of the following floats? 

0x80000000 0xFF94BEEF 0x41180000 
 

–0 NaN +9.5 
 
 0x41180000 = 0b 0|100 0001 0|001 1000 0…0.  
 S = 0, E = 128+2 = 130 → Exponent = E – bias = 3, Mantissa = 1.00112 
 1.00112 × 23 = 1001.12 = 8 + 1 + 0.5 = 9.5 

Floating Point Mathematical Properties 
● Not associative: (2 + 250) – 250  !=  2 + (250 – 250) 

● Not distributive: 100 × (0.1 + 0.2)  !=  100 × 0.1 + 100 × 0.2 

● Not cumulative: 225 + 1 + 1 + 1 + 1  !=  225 + 4 
 
Exercises: 
6) Based on floating point representation, explain why each of the three statements above occurs. 
 

Associative: Only 23 bits of mantissa, so 2 + 250 = 250 (2 gets rounded off).  So LHS = 0, RHS = 2. 

Distributive: 0.1 and 0.2 have infinite representations in binary point (0.2 =  0. 00112), so the LHS and 
RHS suffer from different amounts of rounding (try it!). 
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Cumulative: 1 is 25 powers of 2 away from 225, so 225 + 1 = 225, but 4 is 23 powers of 2 away from 225, so 
it doesn’t get rounded off. 

 
7) If x and y are variable type float, give two different reasons why (x+2*y)-y == x+y  might evaluate to false. 
 

(1) Rounding error:  like what is seen in the examples above. 
       (2)  Overflow:  if x and y are large enough, then x+2*y may result in infinity when x+y does not. 

 
 
IEEE 754 Float (32 bit) Flowchart 
 

 
 
 
 
 
 
 
 
 
x86_64 Assembly 
 

● These are the actual instructions which are running on your computer 
● In practice, it’s another language you get to learn and become familiar with 

 

E 

Denorm(no implicit 1) 

Exponent  = -126 

(-1)S*0.M*2-126 

Normal (implicit 1) 
Exponent = E - 127 

Special Cases  

∞ NaN 

(-1)S*1.M*2E-127 
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● Recall: 
○ Registers hold 64 bits, and are names things like rax,rbx,rcx,rdx,rdi,rsi,rbp,rsp. In 

x86-64 assembly, they are prefixed with “%”. 
○ Instructions consist of an opcode, and then multiple operands, e.g. 

■ movq %rdi, %rbp 
■ This moves (copies) the 64 bit contents of register rdi into register rbp 

○ Destination registers are always on the Right Hand Side (opposite of assignment statements in C, 
Java, Python, Ruby, C++, C#, Bash, Scala, and most any other language you can think of) 

○ In order to follow (dereference) a pointer value contained in a register, use parentheses, e.g. 
■ movq %rdi, (%rbp) 
■ This moves (copies) the 64 bit contents of rdi into the memory location which rbp points 

to 
○ You may only use one set of parens per instruction (an instruction is either a load or a store, but not 

both) 
○ Immediate (constant) operands are denoted with “$”  (e.g.  movq $13, %rax) 

 
The Swap Example (again) 
 
In class, we discussed a series of instructions to swap two locations in memory.  Below are two similar sequences, 
except each has at least one bug. However, buggy assembly doesn’t mean the program crashes; it just means it does 
something different from what we want. Explain what each sequence of instructions actually does, and fix it to 
swap the two intended locations. It may help you to draw a picture. 
 
 

1. movq  %rdx, (%rdi) 
movq  %rax, (%rsi) 
movq  (%rdi), %rax 
movq  (%rsi), %rdx 

 
 
 
 

2. movq  (%rdi), %rax 
movq  %rdx, (%rdi) 
movq  (%rsi), %rdx 
movq  %rax, (%rsi) 

 
 
 
 
1. This clobbers memory at (%rdi) and (%rsi) first 
with the contents of %rdx and %rax. Do the first two 
instructions last, and the last two first 
 
 
 
 
 
2. This is almost there, but stores the original 
contents of %rdx to (%rdi) instead of what was 
loaded from (%rsi). Switch instructions 2 and 3 to get 
the right answer. 


