
CSE 351 Section 2 – Pointers and Bit Operators
Pointers
A pointer is a variable that holds an address. C uses pointers explicitly. If we have a variable x, then &x gives the
address of x rather than the value of x. If we have a pointer p, then *p gives us the value that p points to, rather
than the value of p.

Consider the following declarations and assignments:
 int x;
 int *ptr;
 ptr = &x;

1) We can represent the result of these three lines of code visually as shown.
The variable ptr stores the address of x, and we say “ptr points to x.”
x currently doesn’t contain a value since we did not assign x a value!

2) After executing x = 5;, the memory diagram changes as shown.

3) After executing *ptr = 200;, the memory diagram changes as shown.
We modified the value of x by dereferencing ptr.

Pointer Arithmetic
In C, arithmetic on pointers (++, +, --, -) is scaled by the size of the data type the pointer points to. That is, if p is
declared with pointer type* p, then p + i will change the value of p (an address) by i*sizeof(type) (in
bytes). However, *p returns the data pointed at by p, so pointer arithmetic only applies if p was a pointer to a
pointer.

Exercise:
Draw out the memory diagram after sequential execution of each of the lines below:

 int main(int argc, char **argv) {
 int x = 410, y = 351; // assume &x = 0x10, &y = 0x18
 int *p = &x; // p is a pointer to an integer
 *p = y;
 p = p + 4;
 p = &y;
 x = *p + 1;
 }

Line 1: Line 2: Line 3:

Line 4: Line 5: Line 6:

1)

2)

3)

y

351

x

410

y

351

x

410

p

0x10

y

351

x

351

p

0x10

y

351

p

0x20

y

351

x

351

p

0x18

y

351

x

352

p

0x18

x

351

C Bitwise Operators
& 0 1 ← AND (&) outputs a 1 only when both input bits are 1. | 0 1
0 0 0 0 0 1
1 0 1 OR (|) outputs a 1 when either input bit is 1. → 1 1 1

^ 0 1 ← XOR (^) outputs a 1 when either input is exclusively 1. ~
0 0 1 0 1
1 1 0 NOT (~) outputs the opposite of its input. → 1 0

Masking is very commonly used with bitwise operations. A mask is a binary constant used to manipulate another
bit string in a specific manner, such as setting specific bits to 1 or 0.

Exercises:
1) What happens when we fix/set one of the inputs to the binary bitwise operators? Let x be the other input.

Fill in the following blanks with either 0, 1, x, or x̅ (NOT x):

 x & 0 = _0____ x | 0 = __x___ x ^ 0 = __x___

 x & 1 = _x____ x | 1 = __1___ x ^ 1 = __ x̅___

2) Lab 1 Helper Exercises: Lab 1 is intended to familiarize you with bitwise operations in C through a series of
puzzles. These exercises are either sub-problems directly from the lab or expose concepts needed to complete
the lab. Start early!

Bit Extraction: Returns the value (0 or 1) of the 19th bit (counting from LSB). Allowed operators: >>, &, |, ~.

 int extract19(int x) {
 return (x >> 18) & 0x1;
 }
Subtraction: Returns the value of x–y. Allowed operators: >>, &, |, ~, +.

 int subtract(int x, int y) {
 return x + ((~y) + 1);
 }
Equality: Returns the value of x==y. Allowed operators: >>, &, |, ~, +, ^, !.

 int equals(int x, int y) {
 return !(x ^ y);
 }
Divisible by Eight? Returns the value of (x%8)==0. Allowed operators: >>, <<, &, |, ~, +, ^, !.

 int divisible_by_8(int x) {
 return !((x << 29);
 }
Greater than Zero? Returns the value of x>0. Allowed operators: >>, &, |, ~, +, ^, !.
 int greater_than_0(int x) {
 /* invert and check sign; we need the third operand for the T_min case */
 return ((~x + 1) >> 31) & 0x1 & ~(x >> 31)_OR_!!x & ~(x >> 31);
 }

