
Name: 1 NUMBER REPRESENTATION(10 POINTS)

1 Number Representation(10 points)

Let x=0xE and y=0x7 be integers stored on a machine with a word size of 4bits. Show your work with the
following math operations. The answers—including truncation—should match those given by our
hypothetical machine with 4-bit registers.

A. (2pt) What hex value is the result of adding these two numbers?

In hex: 0xE + 0x7 = 0x15 → 0x5
In binary converted back to hex: 0xE + 0x7 = 1110 + 0111 = 10101 → 0101 = 0x5
Half credit for not truncating to the appropriate value.

B. (2pt) Interpreting these numbers as unsigned ints, what is the decimal result of adding x+ y?

In unsigned decimal: 0xE + 0x7 = 14 + 7 = 21 % 16 = 5
Half credit for not truncating to the appropriate value or incorrect conversion.
No credit for computing in signed decimal

C. (2pt) Interpreting x and y as two’s complement integers, what is the decimal result of computing x−y?

In signed decimal: 0xE - 0x7 =¿ -2 - 7 = -9 → 7
Half credit for not truncating to the appropriate value, or incorrect conversion.
No credit for computing in unsigned decimal

D. (2pt) In one word, what is the phenomenon happening in 1B?

Overflow.

E. (2pt) Circle all statements below that are TRUE on a 32-bit architecture:
Half point each.

• It is possible to lose precision when converting from an int to a float. True

• It is possible to lose precision when converting from a float to an int. True

• It is possible to lose precision when converting from an int into a double. False

• It is possible to lose precision when converting from a double into an int. True

2 of 10

Sp15 Midterm Q1 Solutions

Name: _______________________________

Now assume that our fictional machine with 6-bit integers also has a 6-bit IEEE-like floating point

type, with 1 bit for the sign, 3 bits for the exponent (exp) with a bias of 3, and 2 bits to represent the

mantissa (frac), not counting implicit bits.

(d) If we reinterpret the bits of our binary value from above as our 6-bit floating point type, what

value, in decimal, do we get?

-1.012 * 2^(4+1-3) = -1.012 * 2^2 = -1012 = -5 

(e) If we treat 1101012 as a signed integer, as we did in (b), and then cast it to a 6-bit floating point

value, do we get the correct value in decimal? (That is, can we represent that value in our 6-bit

float?) If yes, what is the binary representation? If not, why not? (and in that case you do not need

to determine the rounded bit representation) 

No, we cannot represent it exactly because there are not enough bits for the mantissa. 

To determine this, we have to find out what the mantissa would be once we are in "sign-

and-magnitude" style: 110101 (-11) → 001011 (+11). In normalized form, this would be:  

(-1)^1 * 1.011 * 2^3, which means frac would need to be 011, which doesn’t fit in 2 bits. 

(f) Assuming the same rules as standard IEEE floating point, what value (in decimal) does the

following represent?

0.0 (it is a denormalized case) 

1 1 0 1 0 1

sign exp frac

0 0 0 0 0 0

sign exp frac

 of 3 12

Sp16 Midterm Q1 Solutions

5 of 7

4. Pointers, Memory & Registers (14 points)

Assuming a 64-bit x86-64 machine (little endian), you are given the following variables and

initial state of memory (values in hex) shown below:

Address +0 +1 +2 +3 +4 +5 +6 +7

0x00 AB EE 1E AC D5 8E 10 E7

0x08 F7 84 32 2D A5 F2 3A CA

0x10 83 14 53 B9 70 03 F4 31

0x18 01 20 FE 34 46 E4 FC 52

0x20 4C A8 B5 C3 D0 ED 53 17

int* ip = 0x00;

short* sp = 0x20;

long* yp = 0x10;

a) Fill in the type and value for each of the following C expressions. If a value cannot be

determined from the given information answer UNKNOWN.

Expression (in C) Type Value (in hex)

yp + 2 long* 0x20

*(sp – 1) short 0x52FC

ip[5] int 0x31F40370

&ip int** UNKNOWN

b) Assuming that all registers start with the value 0, except %rax which is set to 0x4, fill in the

values (in hex) stored in each register after the following x86 instructions are executed.

Remember to give enough hex digits to fill up the width of the register name listed.

Register Value (in hex)

%rax 0x0000 0000 0000 0004

movl 2(%rax), %ebx %ebx 0x84f7 e710

leal (%rax,%rax,2), %ecx %ecx 0x0000 000c

movsbl 4(%rax), %edi %rdi 0x0000 0000 ffff fff7

subw (,%rax,2), %si %si 0x7B09

Sp17 Midterm Q4 Solutions

6 of 7

5. Stack Discipline (15 points)

Examine the following recursive function:

long sunny(long a, long *b) {

 long temp;

 if (a < 1) {

 return *b - 8;

 } else {

 temp = a - 1;

 return temp + sunny(temp - 2, &temp);

 }

}

Here is the x86_64 assembly for the same function:

0000000000400536 <sunny>:

 400536: test %rdi,%rdi

 400539: jg 400543 <sunny+0xd>

 40053b: mov (%rsi),%rax

 40053e: sub $0x8,%rax

 400542: retq

 400543: push %rbx

 400544: sub $0x10,%rsp

 400548: lea -0x1(%rdi),%rbx

 40054c: mov %rbx,0x8(%rsp)

 400551: sub $0x3,%rdi

 400555: lea 0x8(%rsp),%rsi

 40055a: callq 400536 <sunny>

 40055f: add %rbx,%rax

 400562: add $0x10,%rsp

 400566: pop %rbx

 400567: retq

We call sunny from main(), with registers %rsi = 0x7ff…ffad8 and %rdi = 6. The value

stored at address 0x7ff…ffad8 is the long value 32 (0x20). We set a breakpoint at “return
*b - 8” (i.e. we are just about to return from sunny() without making another recursive call).

We have executed the sub instruction at 40053e but have not yet executed the retq.

Fill in the register values on the next page and draw what the stack will look like when the

program hits that breakpoint. Give both a description of the item stored at that location and the

value stored at that location. If a location on the stack is not used, write “unused” in the
Description for that address and put “-----” for its Value. You may list the Values in hex or
decimal. Unless preceded by 0x we will assume decimal. It is fine to use f…f for sequences of

f’s as shown above for %rsi. Add more rows to the table as needed. Also, fill in the box on the

next page to include the value this call to sunny will finally return to main.

Breakpoint

Sp17 Midterm Q5 Solutions

7 of 7

Register Original Value Value at Breakpoint

rsp 0x7ff…ffad0 0x7ff…ffa90
rdi 6 0

rsi 0x7ff…ffad8 0x7ff…ffaa0
rbx 4 2

rax 5 -6

Memory address on stack Name/description of item Value

0x7ffffffffffffad8 Local var in main 0x20

0x7ffffffffffffad0 Return address back to main 0x400827

0x7ffffffffffffac8 Saved %rbx 4

0x7ffffffffffffac0 temp 5

0x7ffffffffffffab8 Unused ---------------

0x7ffffffffffffab0 Return address to sunny 0x40055f

0x7ffffffffffffaa8 Saved %rbx 5

0x7ffffffffffffaa0 temp 2

0x7ffffffffffffa98 Unused ---------------

0x7ffffffffffffa90 Return address to sunny 0x40055f

0x7ffffffffffffa88

0x7ffffffffffffa80

0x7ffffffffffffa78

0x7ffffffffffffa70

0x7ffffffffffffa68

0x7ffffffffffffa60

What value is finally returned to main by this call? 1
DON’T
FORGET

SID: 1234567

7

Question 5: The Stack [12 pts]

The recursive factorial function fact() and its x86-64 disassembly is shown below:

(A) Circle one: [1 pt] fact() is saving %rdi to the Stack as a Caller // Callee

(B) How much space (in bytes) does this function take up in our final executable? [2 pt]

Count all bytes (middle columns) or subtract address of next
instruction (0x40054d) from 0x40052d.

32 B

(C) Stack overflow is when the stack exceeds its limits (i.e. runs into the Heap). Provide an

argument to fact(n) here that will cause stack overflow. [2 pt]

Any negative int

We did mention in the lecture slides that the Stack has 8 MiB limit in x86-64, so since

16B per stack frame, credit for anything between 219 and TMax (231-1).

int fact(int n) {

if(n==0 || n==1)

return 1;

return n*fact(n-1);

000000000040052d <fact>:

 40052d: 83 ff 00 cmpl $0, %edi

 400530: 74 05 je 400537 <fact+0xa>

 400532: 83 ff 01 cmpl $1, %edi

 400535: 75 07 jne 40053e <fact+0x11>

 400537: b8 01 00 00 00 movl $1, %eax

 40053c: eb 0d jmp 40054b <fact+0x1e>

 40053e: 57 pushq %rdi

 40053f: 83 ef 01 subl $1, %edi

 400542: e8 e6 ff ff ff call 40052d <fact>

 400547: 5f popq %rdi

 400548: 0f af c7 imull %edi, %eax

 40054b: f3 c3 rep ret

Au16 Midterm Q5 Solutions

8

(D) If we use the main function shown below, answer the following for the execution of the

entire program: [4 pt]

void main() {

printf(“result = %d\n”,fact(3));

}

Total frames
created: 5

Maximum stack
frame depth: 4

 main → fact(3) → fact(2) → fact(1)

main → printf

(E) In the situation described above where main() calls fact(3), we find that the word 0x2

is stored on the Stack at address 0x7fffdc7ba888. At what address on the Stack can

we find the return address to main()? [3 pt]

0x7fffdc7ba8a0

Only %rdi (current n) and return address get pushed onto Stack during fact().

Address Contents

<Rest of Stack>

0x7fffdc7ba8a0 Return addr to main()
0x7fffdc7ba898 Old %rdi (n=3)
0x7fffdc7ba890 Return addr to fact()
0x7fffdc7ba888 Old %rdi (n=2)
0x7fffdc7ba880 Return addr to fact()

2. Assembly and C (20 points)

Consider the following x86-64 assembly and C code:

<do_something>:

cmp $0x0,%rsi

jle <end>

xor %rax,%rax

sub $0x1,%rsi

<loop>:

lea (%rdi,%rsi, 2),%rdx

add (%rdx),%ax

sub $0x1,%rsi

jns <loop>

<end>:

retq

short do_something(short* a, int len) {

short result = 0;

for (int i = len - 1; i >= 0 ; i--) {

result += a[i] ;

}

return result;

}

(a) Both code segments are implementations of the unknown function do something. Fill in the missing
blanks in both versions. (Hint: %rax and %rdi are used for result and a respectively. %rsi is used
for both len and i)

(b) Briefly describe the value that do something returns and how it is computed. Use only variable names
from the C version in your answer.

do something returns the sum of the shorts pointed to by a. It does so by traversing the array
backwards.

3 of 8

Wi15 Midterm Q2 Solutions

Name: NetID:

3. Assembly and C (30 points)

Consider the following x86-64 assembly, (partially blank) C code, and memory listing. Addresses and values
are 64-bit.

foo:

movl $0, %eax

L1:

testq %rdi, %rdi

je L2

movq (%rdi), %rdi

addl $1, %eax

jmp L1

L2:

ret

int foo(long *p) {

int result = 0;

while (p != NULL) {

// cast p, then deref

p = *(long**)p;

result = result + 1;

}

return result;

}

Address Value
0x1000 0x1030

0x1008 0x1020

0x1010 0x1000

0x1018 0x0000

0x1020 0x1030

0x1028 0x1008

0x1030 0x0000

0x1038 0x1038

0x1040 0x1048

0x1048 0x1040

(a) Given the assembly of foo, fill in the blanks of the C version.

(b) Trace the execution of the call to
foo((long*)0x1000) in the table to
the right. Show which instruction
is executed in each step until foo

returns. In each space, place the
the assembly instruction and the
values of the appropriate registers
after that instruction executes. You

may leave those spots blank when the

value does not change. You might not
need all steps listed on the table.

Instruction %rdi (hex) %eax (decimal)

movl 0x1000 0

testq

je

movq 0x1030

addl 1

jmp

testq

je

movq 0x0

addl 2

jmp

testq

je

ret

(c) Briefly describe the value that foo returns and how it is computed. Use only variable names from the
C version in your answer.

It returns the depth of the pointer chain from p by counting how many times it can be dereferenced
before it’s NULL.

4 of 9

Wi17 Midterm Q3 Solutions

Name:

4. (9 points) Computer-Architecture Design

(a) In roughly one English sentence, give a reason that it is better to have fewer registers in an
instruction-set architecture.

(b) In roughly one English sentence, give a reason that it is better to have many registers in an
instruction-set architecture.

(c) Yes or no: If we decided to change the x86-64 calling convention to make %rbx caller-saved, would
the implementation of the CPU need to change?

Solution:

(a) We can implement the CPU with faster access to the registers, and we can design instruction
encodings with fewer bits for identifying a register. (One reason is enough for full credit.)

We also gave partial credit for saying there are fewer registers to save across a function call.
This really is not a correct answer because unused registers do not take any effort to save, but
the intuition on an open-ended question is good. And there is a related issue when different
programs/threads take turns executing.

(b) It is easier for humans or the compiler to write code without having to use the slower and harder-
to-use memory on the stack for temporary variables.

(c) No (it’s just a convention)

Wi16 Midterm Q4 Solutions

