
CSE351, Spring 2018L26: JVM

Java Virtual Machine
CSE 351 Spring 2018

Model of a Computer “Showing
the Weather”
Pencil and Crayon on Paper
Matai Feldacker-Grossman, Age 4
May 22, 2018

CSE351, Spring 2018L26: JVM

Roadmap

2

car *c = malloc(sizeof(car));
c->miles = 100;
c->gals = 17;
float mpg = get_mpg(c);
free(c);

Car c = new Car();
c.setMiles(100);
c.setGals(17);
float mpg =

c.getMPG();

get_mpg:
pushq %rbp
movq %rsp, %rbp
...
popq %rbp
ret

Java:C:

Assembly
language:

Machine
code:

0111010000011000
100011010000010000000010
1000100111000010
110000011111101000011111

Computer
system:

OS:

Memory & data
Integers & floats
x86 assembly
Procedures & stacks
Executables
Arrays & structs
Memory & caches
Processes
Virtual memory
Memory allocation
Java vs. C

CSE351, Spring 2018L26: JVM

Implementing Programming Languages
 Many choices in how to implement programming models
 We’ve talked about compilation, can also interpret
 Interpreting languages has a long history
 Lisp, an early programming language, was interpreted

 Interpreters are still in common use:
 Python, Javascript, Ruby, Matlab, PHP, Perl, …

Hardware Hardware

3

Your source code

Binary executable

Interpreter
implementation

Interpreter binary

Your source code

CSE351, Spring 2018L26: JVM

An Interpreter is a Program
 Execute (something close to) the source code directly
 Simpler/no compiler – less translation
 More transparent to debug – less translation
 Easier to run on different architectures – runs in a simulated

environment that exists only inside the interpreter process
 Just port the interpreter (program), not the program-intepreted

 Slower and harder to optimize

4

CSE351, Spring 2018L26: JVM

Interpreter vs. Compiler
 An aspect of a language implementation
 A language can have multiple implementations
 Some might be compilers and other interpreters

 “Compiled languages” vs. “Interpreted languages” a misuse of
terminology
 But very common to hear this
 And has some validation in real world (e.g., JavaScript vs. C)

 Also, as about to see, modern language implementations are
often a mix of the two
 Compiling to a bytecode language, then interpreting
 Just-in-time compilation of parts to assembly for

performance
5

CSE351, Spring 2018L26: JVM

“The JVM”

 Java programs are usually run by a Java virtual
machine (JVM)
 JVMs interpret an intermediate language called Java

bytecode
 Many JVMs compile bytecode to native machine code

• just-in-time (JIT) compilation

 Java is sometimes compiled ahead of time (AOT) like C

6

CSE351, Spring 2018L26: JVM

Compiling and Running Java
 The Java compiler converts Java into Java bytecodes
 Java bytecodes are stored in a .class file
 To run the Java compiler:
 javac Foo.java

 To execute the program stored in the bytecodes, Java bytecodes can be
interpreted by a program (an interpreter)

 For Java, this interpreter is called the Java Virtual Machine
 To run the Java virtual machine:
 java Foo
 This loads the contents of Foo.class and interprets the bytecodes

Note: The Java virtual machine is different than the CSE VM running on VMWare
7

CSE351, Spring 2018L26: JVM

Virtual Machine Model

High-Level Language Program
(e.g. Java, C)

Virtual Machine Language
(e.g. Java bytecodes)

Native Machine Language
(e.g. x86, ARM, MIPS)

Bytecode compiler
(e.g. javac Foo.java)

Virtual machine (interpreter)
(e.g. java Foo)

Ahead-of-time
compiler

JIT
compiler

run time

compile time

8

CSE351, Spring 2018L26: JVM

Java bytecode

 like assembly code for JVM,
but works on all JVMs:
hardware-independent

 typed (unlike ASM)
 strong JVM protections variable table

operand stack

constant
pool

0 1 2 3 4 n

Holds pointer ‘this’

Other arguments to method

Other local variables

9

CSE351, Spring 2018L26: JVM

JVM Operand Stack

mov 8(%ebp), %eax
mov 12(%ebp), %edx
add %edx, %eax
mov %eax, -8(%ebp)

iload 1 // push 1st argument from table onto stack
iload 2 // push 2nd argument from table onto stack
iadd // pop top 2 elements from stack, add together, and

// push result back onto stack
istore 3 // pop result and put it into third slot in table

No registers or
stack locations;
all operations use
operand stack.

‘i’ stands for integer,
‘a’ for reference,
‘b’ for byte,
‘c’ for char,
‘d’ for double, …

compiled to x86:

bytecode:

Holds pointer ‘this’

Other arguments to method

Other local variables

constant
pool

variable table
operand stack

0 1 2 3 4 n

machine:

10

CSE351, Spring 2018L26: JVM

A Simple Java Method

Method java.lang.String getEmployeeName()

0 aload 0 // "this" object is stored at 0 in the var table

1 getfield #5 <Field java.lang.String name> // takes 3 bytes
// pop an element from top of stack, retrieve its
// specified instance field and push it onto stack.
// "name" field is the fifth field of the object

4 areturn // Returns object at top of stack

0 1 4
aload_0 areturngetfield 00 05

00 05 B0B42AIn the .class file:

http://en.wikipedia.org/wiki/Java_bytecode_instruction_listings
11

http://en.wikipedia.org/wiki/Java_bytecode_instruction_listings

CSE351, Spring 2018L26: JVM

Class File Format
 Every class in Java source code is compiled to its own class file
 10 sections in the Java class file structure:
 Magic number: 0xCAFEBABE (legible hex from James Gosling – Java’s inventor)
 Version of class file format: the minor and major versions of the class file
 Constant pool: set of constant values for the class
 Access flags: for example whether the class is abstract, static, final, etc.
 This class: The name of the current class
 Super class: The name of the super class
 Interfaces: Any interfaces in the class
 Fields: Any fields in the class
 Methods: Any methods in the class
 Attributes: Any attributes of the class (for example, name of source file, etc.)

 A .jar file collects together all of the class files needed for the program, plus
any additional resources (e.g. images)

12

CSE351, Spring 2018L26: JVM

Disassembled
Java Bytecode

Compiled from Employee.java
class Employee extends java.lang.Object {

public Employee(java.lang.String,int);
public java.lang.String getEmployeeName();
public int getEmployeeNumber();

}

Method Employee(java.lang.String,int)
0 aload_0
1 invokespecial #3 <Method java.lang.Object()>
4 aload_0
5 aload_1
6 putfield #5 <Field java.lang.String name>
9 aload_0
10 iload_2
11 putfield #4 <Field int idNumber>
14 aload_0
15 aload_1
16 iload_2
17 invokespecial #6 <Method void

storeData(java.lang.String, int)>
20 return

Method java.lang.String getEmployeeName()
0 aload_0
1 getfield #5 <Field java.lang.String name>
4 areturn

Method int getEmployeeNumber()
0 aload_0
1 getfield #4 <Field int idNumber>
4 ireturn

Method void storeData(java.lang.String, int)
…

javac Employee.java
javap -c Employee

13

CSE351, Spring 2018L26: JVM

Other languages for JVMs
 JVMs run on so many computers that compilers have been built to translate many

other languages to Java bytecode:
 AspectJ, an aspect-oriented extension of Java
 ColdFusion, a scripting language compiled to Java
 Clojure, a functional Lisp dialect
 Groovy, a scripting language
 JavaFX Script, a scripting language for web apps
 JRuby, an implementation of Ruby
 Jython, an implementation of Python
 Rhino, an implementation of JavaScript
 Scala, an object-oriented and functional programming language
 And many others, even including C!

 Traditionally, JVM definition and implementation was engineered for
Java and still true first-and-foremost, but has evolved as a safe,
GC’ed platform

14

CSE351, Spring 2018L26: JVM

Microsoft’s C# and .NET Framework
 C# has similar motivations as Java
 Virtual machine is called the Common Language Runtime; Common

Intermediate Language is the bytecode for C# and other languages in the
.NET framework

15

CSE351, Spring 2018L26: JVM

We made it! 

16

car *c = malloc(sizeof(car));
c->miles = 100;
c->gals = 17;
float mpg = get_mpg(c);
free(c);

Car c = new Car();
c.setMiles(100);
c.setGals(17);
float mpg =

c.getMPG();

get_mpg:
pushq %rbp
movq %rsp, %rbp
...
popq %rbp
ret

Java:C:

Assembly
language:

Machine
code:

0111010000011000
100011010000010000000010
1000100111000010
110000011111101000011111

Computer
system:

OS:

Memory & data
Integers & floats
Machine code & C
x86 assembly
Procedures & stacks
Arrays & structs
Memory & caches
Processes
Virtual memory
Memory allocation
Java vs. C

	Java Virtual Machine�CSE 351 Spring 2018
	Roadmap
	Implementing Programming Languages
	An Interpreter is a Program
	Interpreter vs. Compiler
	“The JVM”
	Compiling and Running Java
	Virtual Machine Model
	Java bytecode
	JVM Operand Stack
	A Simple Java Method
	Class File Format
	Disassembled�Java Bytecode
	Other languages for JVMs
	Microsoft’s C# and .NET Framework
	We made it! 

