CSE351, Spring 2018

YA UNIVERSITY of WASHINGTON L25: Javaand C

Java and C
CSE 351 Spring 2018

SERIOUSLY? THIS T BET THEY ACTUALLY HIRED SOMEONE | | WELL, YOU KNOW WHAT THEY SAY—
THING RUNS JALA? TO SPEND SIx MONTHS FORTING THIS | | WHEN ALL YOU HAVE 1S A FAIR OF
ITS SINGLE-PURRSE. | | JWM SO THEY COULD WRITE THEIR 20 BOLT CUTTERS AND A BOTTLE OF VODKA,
HARDWARE.! LINES OF CODE INA FAMILIAR SETTING. | | EVERYTHING LOOKS UKE THE LOCK ON

k THE DOOR OF WOLF BLITZERS BOATHOUSE.
T\ o/
Cﬂ f

TMGLAD
YoU HAD A
L) NICE NIGHT

https://xkcd.com/801/

https://xkcd.com/801/

YA UNIVERSITY of WASHINGTON

: Javaand C

CSE351, Spring 2018

Roadmap

C: Java:

car *c = malloc(sizeof(car)); Car ¢ = new Car();
c->miles = 100; c.setMiles(100);
c->gals = 17; c.setGals(17);
float mpg = get mpg(c); float mpg =
free(c); C.getMPG();

Assembly
language:

Machine
code:

7‘

get _mpg:
pushq %rbp
movq %rsp, %rbp
popq %rbp
ret

v

Java vs. C

0111010000011000

1000100111000010

100011010000010000000010

110000011111101000011111

Windows 10

\/
/\

. 0S X Yosemite \A/

Computer
system:

YA UNIVERSITY of WASHINGTON L25: Javaand C CSES351, Spring 2018

Java vs. C

+» Reconnecting to Java (hello CSE143!)

" But now you know a lot more about what really happens
when we execute programs

+» We’'ve learned about the following items in C; now
we’ll see what they look like for Java:
= Representation of data
= Pointers / references
= Casting
" Function / method calls including dynamic dispatch
" Runtime environment
" Translation from high-level code to low-level code

YA UNIVERSITY of WASHINGTON

L25: Javaand C

CSE351, Spring 2018

Worlds Colliding

+» CSE351 has given you a “really different feeling”
about what computers do and how programs execute

<~ We have occasionally contrasted to Java, but CSE143
may still feel like “a different world”

" |t's not —it’s just a higher-level of abstraction

" Connect these levels via how-one-could-implement-Java in
351 terms

YA UNIVERSITY of WASHINGTON L25: Javaand C CSES351, Spring 2018

Meta-point to this lecture

+» None of the data representations we are going to talk
about are quaranteed by Java

+ In fact, the language simply provides an abstraction
(Java language specification)

" Tells us how code should behave for different language

constructs, but we can't easily tell how things are really
represented

" Butitisimportant to understand an implementation of the
lower levels — useful in thinking about your program

YA UNIVERSITY of WASHINGTON L25: Javaand C

CSE351, Spring 2018

Data in Java

+» Integers, floats, doubles, pointers —same as C

= “Pointers” are called “references” in Java, but are much
more constrained than C’s general pointers

= Java’s portability-guarantee fixes the sizes of all types
- Example: intis 4 bytes in Java regardless of machine

" No unsigned types to avoid conversion pitfalls

- Added some useful methods in Java 8 (also use bigger signed types)
» null is typically represented as O but “you can’t tell”
%~ Much more interesting:
" Arrays
= Characters and strings
" Objects

YA UNIVERSITY of WASHINGTON

Data in Java: Arrays

- Every element initialized to O or nul 1

- Length specified in immutable field at start of array (1Nt —4
bytes)
= array.length returns value of this field

» Since it has this info, what can it do?

Java:

int array[5];

21?7

??

??

??

O 4

L25: Javaand C

20

array = new int[5];

00

00

00

00

00

A

20 24

CSE351, Spring 2018

YA UNIVERSITY of WASHINGTON L25: Javaand C CSES351, Spring 2018

Data in Java: Arrays

Every element initialized to O or nul |

Length specified in immutable field at start of array (1Nt —4
bytes)

= array. length returns value of this field

Every access triggers a bounds-check

= Code is added to ensure the index is within bounds

= Exception if out-of-bounds

C: int array[5]; To speed up bounds-checking:
o[29]729[272]77 e Length field is likely in cache
e Compiler may store length field

0 4 20 in register for loops
Java: int[] array = new int[5]; « Compiler may prove that some
5 00l00loolooloo checks are redundant

O 4 20 24

YA UNIVERSITY of WASHINGTON

L25: Javaand C

Data in Java: Characters & Strings

» Two-byte Unicode instead of ASCII

= Represents most of the world’s alphabets

» String not bounded by a ‘\O’ (null character)
= Bounded by hidden length field at beginning of string

» All String objects read-only (vs. StringBuffer)

Example: the string “CSE351”

C:
(ASCII)

Java:
(Unicode)

CSE351, Spring 2018

43153145|33|35|31|\0
0O 1 4 7

6 43]100(53]00(45]00|33|00|35{00(31|00
0 4 8 16

YA UNIVERSITY of WASHINGTON

L25: Javaand C

Data in Java: Objects

0

stored “inline”

CSE351, Spring 2018

» Data structures (objects) are always stored by reference, never

" Include complex data types (arrays, other objects, etc.) using references

C: Java:
struct rec { class Rec {
int 1; int i1;
int a[3]; int[] a = new Int[3];
struct rec *p; Rec p;
}; ...
= a[] stored “inline” as part of ¥
struct = a stored by reference in object
4 1|a ? p‘
i|a p ¢ 0 4 [12 20
0O 4 16 24 3
0O 4 16 10

YA UNIVERSITY of WASHINGTON L25: Javaand C

CSE351, Spring 2018

Pointer/reference fields and variables

+ In C, we have “=>" and “.” for field selection depending on
whether we have a pointer to a struct or a struct
= (*r).a issocommon it becomes r->a

+ InJava, all non-primitive variables are references to objects
= We always use r.a notation
= But really follow reference to r with offset to a, just like r->ain C
® So no Java field needs more than 8 bytes

C: Java:

struct rec *r = malloc(...); r = new Rec();
struct rec r2; r2 = new Rec(Q);
r->1 = val; r.i = val;
r->af[2] = val; r.a[2] = val;
r->p = &r2; r.p = r2;

11

YA UNIVERSITY of WASHINGTON

L25: Javaand C

Pointers/References

» Pointers in C can pointto a

ny memory address

» References in Java can only point to [the starts of] objects
= Can only be dereferenced to access a field or element of that object

CSE351, Spring 2018

C: Java:
struct rec { class Rec {
int 1; int 1;
int a[3]; int[] a = new Int[3];
struct rec *p; Rec p;
}; +
struct rec* r = malloc(.); Rec r = new Rec();
some_ftn(&(r->al[l1])); // ptr some _fn(r.a, 1); // ref, i1ndex

r r Ve
4 "~ 1|a ? [)‘
ijar p ¢ 0 4 [12 \ 20
0 4 16 24 3 [int[3]

O 4

16 12

Casting in C (example from Lab 5)

+» Can cast any pointer into any other pointer
" Changes dereference and arithmetic behavior

struct BlockInfo {
size_t sizeAndTags;
struct BlockInfo* next;

YA UNIVERSITY of WASHINGTON L25: Javaand C CSES351, Spring 2018

|

> -

_ struct Blocklnfo* prev; [Cbﬁbnﬁochar*to
} ’ do unscaled addition
typedef struct BlockInfo BlockInfo;

Int X; Cast back into
BlockInfo *b; BlocklInfo * to use
BlockInfo *newBlock; as BlockInfo struct

]

ﬁéWBlock = (BlocklInfo *f(z/E;;;;/:; b + x);
\ ;

=~

s(n|p s{n|p
0 8 16 24 X

13

YA UNIVERSITY of WASHINGTON

L25: Java and C CSES351, Spring 2018

Type-safe casting in Java

+ Can only cast compatible object references

= Based on class hierarchy

class Boat extends Vehicle {
int propellers;

}

) .-

class Object {

}

Vehicle v

Boat
Car

bl
cl

Vehicle v1
Vehicle v2

Car

Car

Boat

Car
Car

c2

c3

b2

c4
ch

class Vehicle {
> int passengers;

class Car extends Vehicle {
int wheels;

new Boat();

//
//

}
new Vehicle(); // super class of Boat and Car
|--> sibling
|--> sibling

new Car();

new Car();

vl;

new Boat();
new Vehicle();

(Boat) v;

(Car) v2;
(Car) bi;

14

YA UNIVERSITY of WASHINGTON

L25: Java and C CSES351, Spring 2018

Type-safe casting in Java

+ Can only cast compatible object references

® Based on class hierarchy class Boat extends Vehicle {

int propellers;

}

class Object {
>

) .-

class Vehicle {

}

class Car extends Vehicle {
int wheels;

}

int passengers;

Vehicle v = new Vehicle(); // super class of Boat and Car

Boat bl = new Boat();

Car cl = new Car();

Vehicle vl = new Car();

Vehicle v2 = vi1;

// |--> sibling
// |--> sibling

«—— /' Everything needed for Vehicle also in Car
«—— / vlisdeclared as type Vehicle

Car c2 = new Boat(); «——— X Compiler error: Incompatible type — elements in
Car that are not in Boat (siblings)
Car c3 = new Vehicle(); «— X Compiler error: Wrong direction — elements Car

Boat b2 = (Boat) v;

Car c4 = (Car) vZ2;
Car c5 = (Car) bi;

notin Vehicle (wheels)

«—— X Runtime error: Vehicle does not contain all
elements in Boat (propellers)

«—— ' V2 refers to a Car at runtime

«—— X Compiler error: Unconvertable types — b1 is
declared as type Boat

15

YA UNIVERSITY of WASHINGTON L25: Javaand C

Java Object Definitions

CSE351, Spring 2018

class Point {

boolean samePlace(Point p) {
return (x == p.x) && (y == p.y);
}
ks

—

double Xx; .
double y: }< fields
Point() {< constructor
X = 0;
y = 0;
}

— method(s)

—

Point p = new Point();<

creation

16

YA UNIVERSITY of WASHINGTON

L25: Javaand C

CSE351, Spring 2018

Java Objects and Method Dispatch

Point object
header | vtabl e Jotr X
v
vtable for class PoiInt: p o—

Point object

| ~—

code for Point()

code for samePlace()

header vtable‘ptr

X

Virtual method table (vtable)

= Like a jump table for instance (“virtual”) methods plus other class info

" One table per class

» Object header : GC info, hashing info, lock info, etc.

" Why no size?

17

YA UNIVERSITY of WASHINGTON L25: Javaand C

Java Constructors

CSE351, Spring 2018

<+ When we call new: allocate space for object (data fields and
references), initialize to zero/null, and run constructor method

Java: C pseudo-translation:
Point p = new Point(); Point* p = calloc(l,sizeof(Point));
p->header = ..._;

p->vtable = &Point_vtable;
p->vtable[0] (p);

Point object
header | vtabl e Jotr X
v
vtable for class PoiInt: p o—

\

code for Point()

code for samePlace()

18

YA UNIVERSITY of WASHINGTON L25: Javaand C CSES351, Spring 2018

Java Methods

+ Static methods are just like functions

+ Instance methods:
= Can refer to this;
= Have an implicit first parameter for this; and
® Can be overridden in subclasses

+» The code to run when calling an instance method is chosen at
runtime by lookup in the vtable

Java: C pseudo-translation:
p.samePlace(q); p->vtable[1](p, 9);
Point object
header | vtable PLtr X y
v
vtable for class Point: o o—

\ code for Point() code for samePlace() 19

YA UNIVERSITY of WASHINGTON L25: Javaand C CSES351, Spring 2018

Subclassing

class 3DPoint extends Point {
double z;
boolean samePlace(Point p2) {
return false;
+
void sayHI() {
System.out.printin("'hello™);

}

}

+» Where does “zZ” go? At end of fields of PoiInt
= Point fields are always in the same place, so Point code can run on
3DPoint objects without modification
+» Where does pointer to code for two new methods go?
= No constructor, so use default POInt constructor
= To override “samePlace”, use same vtable position
= Add new pointer at end of vtable for new method “sayH1”

20

YA UNIVERSITY of WASHINGTON L25: Javaand C CSES351, Spring 2018

Subclassing

class 3DPoint extends Point {
double z;
boolean samePlace(Point p2) {
return false;
+
void sayHI() {
System.out.printin("'hello™);

+
+
Z tacked on at end
3DPoint object ‘
header | vtable X Yy z

sayHI1 tackfd on at end Code for
4 3 sayH1
¢

vtable for 3DPoint: | constructor ¢ samePlace ? sayHi

(not PolInt) / \

Old code for New code for
constructor samePlace 21

YA UNIVERSITY of WASHINGTON

Dynamic Dispatch

Point object

L25: Java and C CSES351, Spring 2018

header |vtable ptr

Polnt vtable:

code for Point’s samePlace()

\
De=> ??77? \\>

code for Point()

3DPoint object
header | vtable X Yy z
_—»| code for sayHi()
3DPoint vtable: \ o—
code for 3DPoint’s samePlace()
Java: C pseudo-translation:

Point p = ??7;
return p.samePlace(q);

// works regardless of what p 1s
return p->vtable[1](p, 9);

22

YA UNIVERSITY of WASHINGTON CSES351, Spring 2018

Ta-da!

% In CSE143, it may have seemed “magic” that an
inherited method could call an overridden method

" You were tested on this endlessly

+» The “trick” in the implementation is this part:

p->vtable[1](p.q)

" |n the body of the pointed-to code, any calls to (other)
methods of this will use p->vtable

= Dispatch determined by p, not the class that defined a
method

23

YA UNIVERSITY of WASHINGTON

L25: Javaand C

Practice Question

CSE351, Spring 2018

» Assume: 64-bit pointers and that a Java object header is 8 B
- What are the sizes of the things being pointed at by ptr_c

and ptr_j°?
struct c { class jobj {
int 1; int 1;
char s[3]; String s = "hi'"';
int a[3]; int[] a = new Int[3];
struct c *p; Jobj p;
}; }
struct c* ptr_c; jobj ptr_j = new jobjQO;

24

	Java and C�CSE 351 Spring 2018
	Roadmap
	Java vs. C
	Worlds Colliding
	Meta-point to this lecture
	Data in Java
	Data in Java: Arrays
	Data in Java: Arrays
	Data in Java: Characters & Strings
	Data in Java: Objects
	Pointer/reference fields and variables
	Pointers/References
	Casting in C (example from Lab 5)
	Type-safe casting in Java
	Type-safe casting in Java
	Java Object Definitions
	Java Objects and Method Dispatch
	Java Constructors
	Java Methods
	Subclassing
	Subclassing
	Dynamic Dispatch
	Ta-da!
	Practice Question

