
CSE351, Spring 2018L24: Memory Allocation III

Memory Allocation III
CSE 351 Spring 2018

(original source unknown)

CSE351, Spring 2018L24: Memory Allocation III

Keeping Track of Free Blocks

1) Implicit free list using length – links all blocks using math
 No actual pointers, and must check each block if allocated or free

2) Explicit free list among only the free blocks, using pointers

3) Segregated free list
 Different free lists for different size “classes”

4) Blocks sorted by size
 Can use a balanced binary tree (e.g. red-black tree) with pointers within

each free block, and the length used as a key
2

20 16 824

20 16 824

= 4-byte box (free)

= 4-byte box (allocated)

CSE351, Spring 2018L24: Memory Allocation III

Segregated List (SegList) Allocators
 Each size class of blocks has its own free list
 Organized as an array of free lists

 Often have separate classes for each small size
 For larger sizes: One class for each two-power size

3

16

24-32

40-inf

8

Size class
(in bytes)

CSE351, Spring 2018L24: Memory Allocation III

SegList Allocator

 Have an array of free lists for various size classes

 To allocate a block of size 𝑛𝑛:
 Search appropriate free list for block of size 𝑚𝑚 ≥ 𝑛𝑛
 If an appropriate block is found:

• [Optional] Split block and place free fragment on appropriate list

 If no block is found, try the next larger class
• Repeat until block is found

 If no block is found:
 Request additional heap memory from OS (using sbrk)
 Place remainder of additional heap memory as a single free

block in appropriate size class
4

CSE351, Spring 2018L24: Memory Allocation III

SegList Allocator

 Have an array of free lists for various size classes

 To free a block:
 Mark block as free
 Coalesce (if needed)
 Place on appropriate class list

5

CSE351, Spring 2018L24: Memory Allocation III

SegList Advantages

 Higher throughput
 Search is log time for power-of-two size classes

 Better memory utilization
 First-fit search of seglist approximates a best-fit search of

entire heap
 Extreme case: Giving every block its own size class is no

worse than best-fit search of an explicit list
 Don’t need to use space for block size for the fixed-size

classes

6

CSE351, Spring 2018L24: Memory Allocation III

Allocation Policy Tradeoffs

 Data structure of blocks on lists
 Implicit (free/allocated), explicit (free), segregated (many

free lists) – others possible!

 Placement policy: first-fit, next-fit, best-fit
 Throughput vs. amount of fragmentation

 When do we split free blocks?
 How much internal fragmentation are we willing to tolerate?

 When do we coalesce free blocks?
 Immediate coalescing: Every time free is called
 Deferred coalescing: Defer coalescing until needed

• e.g. when scanning free list for malloc or when external
fragmentation reaches some threshold

7

CSE351, Spring 2018L24: Memory Allocation III

More Info on Allocators

 D. Knuth, “The Art of Computer Programming”, 2nd

edition, Addison Wesley, 1973
 The classic reference on dynamic storage allocation

 Wilson et al, “Dynamic Storage Allocation: A Survey
and Critical Review”, Proc. 1995 Int’l Workshop on
Memory Management, Kinross, Scotland, Sept, 1995.
 Comprehensive survey
 Available from CS:APP student site (csapp.cs.cmu.edu)

8

CSE351, Spring 2018L24: Memory Allocation III

Memory Allocation

 Dynamic memory allocation
 Introduction and goals
 Allocation and deallocation (free)
 Fragmentation

 Explicit allocation implementation
 Implicit free lists
 Explicit free lists (Lab 5)
 Segregated free lists

 Implicit deallocation: garbage collection
 Common memory-related bugs in C

9

CSE351, Spring 2018L24: Memory Allocation III

Wouldn’t it be nice…

 If we never had to [explicitly] free memory?
 And couldn’t mess up and free it too early?

 Do you free objects in Java?

10

CSE351, Spring 2018L24: Memory Allocation III

Garbage Collection (GC)

 Garbage collection: automatic reclamation of heap-allocated
storage – application never explicitly frees memory

 Common in implementations of functional languages, scripting
languages, and modern object oriented languages:
 Lisp, Racket, Erlang, ML, Haskell, Scala, Java, C#, Perl, Ruby, Python, Lua,

JavaScript, Dart, Mathematica, MATLAB, many more…

 Variants (“conservative” garbage collectors) exist for C and C++
 However, cannot necessarily collect all garbage

11

void foo() {
int* p = (int*) malloc(128);
return; /* p block is now garbage! */

}

(Automatic Memory Management)

CSE351, Spring 2018L24: Memory Allocation III

Garbage Collection

 How does the memory allocator know when memory
can be freed?
 In general, we cannot know what is going to be used in the

future since it depends on conditionals
 But, we can tell that certain blocks cannot be used if they

are unreachable (via pointers in registers/stack/globals)

 Memory allocator needs to know what is a pointer
and what is not – how can it do this?
 Sometimes with help from the compiler

12

CSE351, Spring 2018L24: Memory Allocation III

Memory as a Graph
 We view memory as a directed graph
 Each allocated heap block is a node in the graph
 Each pointer is an edge in the graph
 Locations not in the heap that contain pointers into the heap are called

root nodes (e.g. registers, stack locations, global variables)

13

A node (block) is reachable if there is a path from any root to that node
Non-reachable nodes are garbage (cannot be needed by the application)

Root nodes

Heap nodes

not reachable
(garbage)

reachable

CSE351, Spring 2018L24: Memory Allocation III

Garbage Collection

 Dynamic memory allocator can free blocks if there are
no pointers to them

 How can it know what is a pointer and what is not?

 We’ll make some assumptions about pointers:
 Memory allocator can distinguish pointers from non-

pointers
 All pointers point to the start of a block in the heap
 Application cannot hide pointers

(e.g. by coercing them to an int, and then back again)

14

CSE351, Spring 2018L24: Memory Allocation III

Classical GC Algorithms
 Mark-and-sweep collection (McCarthy, 1960)
 Does not move blocks (unless you also “compact”)

 Reference counting (Collins, 1960)
 Does not move blocks (not discussed)

 Copying collection (Minsky, 1963)
 Moves blocks (not discussed)

 Generational Collectors (Lieberman and Hewitt, 1983)
 Most allocations become garbage very soon, so

focus reclamation work on zones of memory recently allocated.

 For more information:
 Jones, Hosking, and Moss, The Garbage Collection Handbook: The Art of

Automatic Memory Management, CRC Press, 2012.
 Jones and Lin, Garbage Collection: Algorithms for Automatic Dynamic

Memory, John Wiley & Sons, 1996.
15

CSE351, Spring 2018L24: Memory Allocation III

Mark and Sweep Collecting
 Can build on top of malloc/free package
 Allocate using malloc until you “run out of space”

 When out of space:
 Use extra mark bit in the header of each block
 Mark: Start at roots and set mark bit on each reachable block
 Sweep: Scan all blocks and free blocks that are not marked

16

Before mark

root

After mark Mark bit set

After sweep freefree

Arrows are NOT
free list pointers

CSE351, Spring 2018L24: Memory Allocation III

Assumptions For a Simple Implementation
 Application can use functions to allocate memory:
 b=new(n) returns pointer, b, to new block with all locations cleared
 b[i] read location i of block b into register
 b[i]=v write v into location i of block b

 Each block will have a header word (accessed at b[-1])

 Functions used by the garbage collector:
 is_ptr(p) determines whether p is a pointer to a block
 length(p) returns length of block pointed to by p, not including

header
 get_roots() returns all the roots

17

CSE351, Spring 2018L24: Memory Allocation III

Mark
 Mark using depth-first traversal of the memory graph
 Start recursive marking from all the roots (get_roots())

18

ptr mark(ptr p) { // p: some word in a heap block
if (!is_ptr(p)) return; // do nothing if not pointer
if (markBitSet(p)) return; // check if already marked
setMarkBit(p); // set the mark bit
for (i=0; i<length(p); i++) // recursively call mark on

mark(p[i]); // all words in the block
return;

}

Before mark

root

After mark Mark bit set

CSE351, Spring 2018L24: Memory Allocation III

Sweep

 Sweep using sizes in headers

19

ptr sweep(ptr p, ptr end) { // ptrs to start & end of heap
while (p < end) { // while not at end of heap

if (markBitSet(p)) // check if block is marked
clearMarkBit(p); // if so, reset mark bit

else if (allocateBitSet(p)) // if not marked, but allocated
free(p); // free the block

p += length(p); // adjust pointer to next block
}

}

After mark Mark bit set

After sweep freefree

CSE351, Spring 2018L24: Memory Allocation III

Conservative Mark & Sweep in C
 Would mark & sweep work in C?
 is_ptr determines if a word is a pointer by checking if it points to an

allocated block of memory
 But in C, pointers can point into the middle of allocated blocks

(not so in Java)
• Makes it tricky to find all allocated blocks in mark phase

 There are ways to solve/avoid this problem in C, but the resulting
garbage collector is conservative:
• Every reachable node correctly identified as reachable, but some unreachable

nodes might be incorrectly marked as reachable
 In Java, all pointers (i.e. references) point to the starting address of an

object structure – the start of an allocated block
20

header
ptr

CSE351, Spring 2018L24: Memory Allocation III

Memory-Related Perils and Pitfalls in C

21

A. Misunderstanding pointer arithmetic
B. Off by one error
C. Using a pointer instead of the object it points to (or reverse)
D. Not checking the max string size
E. Interpreting something that is not a pointer as a pointer
F. Failing to free blocks
G. Accessing freed blocks or deallocated stack pointers
H. Freeing blocks multiple times
I. Allocating the (possibly) wrong sized object
J. Reading uninitialized memory
K. …

CSE351, Spring 2018L24: Memory Allocation III

So “what happens”?

 Unlike in “safe” aka “managed” languages, a C
program with even one of these (or other errors) can,
when executed, do anything

 Compiler, especially with higher optimization levels,
assumes no such errors exist, and does not worry
about what the assembly code might do otherwise

 Therefore, in practice, debugging, can involve your
351-level thinking
 C is a “high-level language” only when it isn’t buggy

22

CSE351, Spring 2018L24: Memory Allocation III

Dereferencing Bad Pointers
 The classic scanf bug

 Causes scanf to interpret contents of val as an address!
 Best case: program terminates immediately due to segmentation fault
 Worst case: contents of val correspond to some valid read/write area of

virtual memory, causing scanf to overwrite that memory, with
disastrous and baffling consequences much later in program execution

int val;

...

scanf("%d", val);

23

CSE351, Spring 2018L24: Memory Allocation III

Reading Uninitialized Memory
 Wrongly assuming that heap data is initialized to zero

/* return y = Ax */
int *matvec(int **A, int *x) {

int *y = (int *)malloc(N * sizeof(int));
int i, j;

for (i=0; i<N; i++) {
for (j=0; j<N; j++) {

y[i] += A[i][j] * x[j];
}

}
return y;

}

24

CSE351, Spring 2018L24: Memory Allocation III

Overwriting Memory
 Allocating the (possibly) wrong sized object

int **p;

p = (int **)malloc(N * sizeof(int));

for (i=0; i<N; i++) {
p[i] = (int *)malloc(M * sizeof(int));

}

CSE351, Spring 2018L24: Memory Allocation III

Overwriting Memory
 Off-by-one error

int **p;

p = (int **)malloc(N * sizeof(int *));

for (i=0; i<=N; i++) {
p[i] = (int *)malloc(M * sizeof(int));

}

CSE351, Spring 2018L24: Memory Allocation III

Overwriting Memory
 Not checking the max string size

 Basis for classic buffer overflow attacks
 Lab 3

char s[8];
int i;

gets(s); /* reads "123456789" from stdin */

CSE351, Spring 2018L24: Memory Allocation III

Overwriting Memory
 Misunderstanding pointer arithmetic

int *search(int *p, int val) {

while (p && *p != val)
p += sizeof(int);

return p;
}

CSE351, Spring 2018L24: Memory Allocation III

Referencing Stack Variables Too Late
 Forgetting that local variables disappear when a

function returns (call-stack space reused by
subsequent calls)

 This will never “mess up” foo, but rather some other
code later (if we’re lucky, the caller real soon)

int *foo () {
int val;
…
return &val;

}

CSE351, Spring 2018L24: Memory Allocation III

Freeing Blocks Multiple Times
 Nasty!

 What does the free list look like?

x = (int *)malloc(N * sizeof(int));
<manipulate x>

free(x);
...

y = (int *)malloc(M * sizeof(int));
free(x);

<manipulate y>

CSE351, Spring 2018L24: Memory Allocation III

Freeing Blocks Multiple Times, Part 2, 3

32

x = (int *)malloc(N * sizeof(int));
<manipulate x>

y = x;
free(x);
free(y);

x = (int *)malloc(N * sizeof(int));
<manipulate x>

foo(x);
free(x);

void foo(int *y) {
…
free(y);

}

CSE351, Spring 2018L24: Memory Allocation III

Referencing Freed Blocks
 Evil!

x = (int *)malloc(N * sizeof(int));
<manipulate x>

free(x);
...

y = (int *)malloc(M * sizeof(int));
for (i=0; i<M; i++)

y[i] = x[i]++;

CSE351, Spring 2018L24: Memory Allocation III

Failing to Free Blocks (Memory Leaks)
 Slow, silent, long-term killer!

void foo() {
int *x = (int *)malloc(N*sizeof(int));
...
return;

}

CSE351, Spring 2018L24: Memory Allocation III

Failing to Free Blocks (Memory Leaks)
 Freeing only part of a data structure

struct list {
int val;
struct list *next;

};

foo() {
struct list *head =

(struct list *)malloc(sizeof(struct list));
head->val = 0;
head->next = NULL;
<create and manipulate the rest of the list>
...
free(head);
return;

}

CSE351, Spring 2018L24: Memory Allocation III

Dealing With Memory Bugs
 Conventional debugger (gdb)
 Good for finding bad pointer dereferences
 Hard to detect the other memory bugs

 Debugging malloc (UToronto CSRI malloc)
 Wrapper around conventional malloc
 Detects memory bugs at malloc and free boundaries

• Memory overwrites that corrupt heap structures
• Some instances of freeing blocks multiple times
• Memory leaks

 Cannot detect all memory bugs
• Overwrites into the middle of allocated blocks
• Freeing block twice that has been reallocated in the interim
• Referencing freed blocks

36

CSE351, Spring 2018L24: Memory Allocation III

Dealing With Memory Bugs (cont.)

 Some malloc implementations contain checking
code
 Linux glibc malloc: setenv MALLOC_CHECK_ 2
 FreeBSD: setenv MALLOC_OPTIONS AJR

 Binary translator: valgrind (Linux), Purify
 Powerful debugging and analysis technique
 Rewrites text section of executable object file
 Can detect all errors as debugging malloc
 Can also check each individual reference at runtime

• Bad pointers
• Overwriting
• Referencing outside of allocated block

37

CSE351, Spring 2018L24: Memory Allocation III

What about Java or ML or Python or …?

 In memory-safe languages, most of these bugs are
impossible
 Cannot perform arbitrary pointer manipulation
 Cannot get around the type system
 Array bounds checking, null pointer checking
 Automatic memory management

 But one of the bugs we saw earlier is possible. Which
one?

38

CSE351, Spring 2018L24: Memory Allocation III

Memory Leaks with GC
 Not because of forgotten free — we have GC!
 Unneeded “leftover” roots keep objects reachable
 Sometimes nullifying a variable is not needed for correctness

but is for performance (x.f = null)
 Example: Don’t leave big data structures you’re done with in a

static field

39

Root nodes

Heap nodes

not reachable
(garbage)

reachable

	Memory Allocation III�CSE 351 Spring 2018
	Keeping Track of Free Blocks
	Segregated List (SegList) Allocators
	SegList Allocator
	SegList Allocator
	SegList Advantages
	Allocation Policy Tradeoffs
	More Info on Allocators
	Memory Allocation
	Wouldn’t it be nice…
	Garbage Collection (GC)
	Garbage Collection
	Memory as a Graph
	Garbage Collection
	Classical GC Algorithms
	Mark and Sweep Collecting
	Assumptions For a Simple Implementation
	Mark
	Sweep
	Conservative Mark & Sweep in C
	Memory-Related Perils and Pitfalls in C
	So “what happens”?
	Dereferencing Bad Pointers
	Reading Uninitialized Memory
	Overwriting Memory
	Overwriting Memory
	Overwriting Memory
	Overwriting Memory
	Referencing Stack Variables Too Late
	Freeing Blocks Multiple Times
	Freeing Blocks Multiple Times, Part 2, 3
	Referencing Freed Blocks
	Failing to Free Blocks (Memory Leaks)
	Failing to Free Blocks (Memory Leaks)
	Dealing With Memory Bugs
	Dealing With Memory Bugs (cont.)
	What about Java or ML or Python or …?
	Memory Leaks with GC

