
CSE351, Spring 2018L21: Virtual Memory II

Virtual Memory II
CSE 351 Spring 2018

https://xkcd.com/1495/

https://xkcd.com/1495/

CSE351, Spring 2018L21: Virtual Memory II

Virtual Memory (VM)

 Overview and motivation
 VM as a tool for caching
 Address translation
 VM as a tool for memory management
 VM as a tool for memory protection

2

CSE351, Spring 2018L21: Virtual Memory II

Review: Terminology

 Context switch
 Switch between processes on the same CPU

 Page in
 Move pages of virtual memory from disk to physical memory

 Page out
 Move pages of virtual memory from physical memory to disk

 Thrashing
 Total working set size of processes is larger than physical

memory and causes excessive paging in and out instead of
doing useful computation

3

CSE351, Spring 2018L21: Virtual Memory II

VM for Managing Multiple Processes
 Key abstraction: each process has its own virtual address space
 It can view memory as a simple linear array

 With virtual memory, this simple linear virtual address space
need not be contiguous in physical memory
 Process needs to store data in another VP? Just map it to any PP!

4

Virtual
Address

Space for
Process 1:

Physical
Address
Space
(DRAM)

0

N-1
(e.g., read-only
library code)

Virtual
Address

Space for
Process 2:

VP 1
VP 2
...

0

N-1

VP 1
VP 2
...

PP 2

PP 6

PP 8

...

0

M-1

Address
translation

CSE351, Spring 2018L21: Virtual Memory II

Simplifying Linking and Loading

 Linking
 Each program has similar virtual

address space
 Code, Data, and Heap always

start at the same addresses

 Loading
 execve allocates virtual pages

for .text and .data sections
& creates PTEs marked as invalid

 The .text and .data sections
are copied, page by page, on
demand by the virtual memory
system

5

Kernel virtual memory

Memory-mapped region for
shared libraries

Run-time heap
(created by malloc)

User stack
(created at runtime)

Unused
0

%rsp
(stack
pointer)

Memory
invisible to
user code

brk

0x400000

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

Loaded
from the
executable
file

CSE351, Spring 2018L21: Virtual Memory II

VM for Protection and Sharing
 The mapping of VPs to PPs provides a simple mechanism to

protect memory and to share memory between processes
 Sharing: map virtual pages in separate address spaces to the same

physical page (here: PP 6)
 Protection: process can’t access physical pages to which none of its

virtual pages are mapped (here: Process 2 can’t access PP 2)

6

Virtual
Address

Space for
Process 1:

Physical
Address
Space
(DRAM)

0

N-1
(e.g., read-only
library code)

Virtual
Address

Space for
Process 2:

VP 1
VP 2
...

0

N-1

VP 1
VP 2
...

PP 2

PP 6

PP 8

...

0

M-1

Address
translation

CSE351, Spring 2018L21: Virtual Memory II

Memory Protection Within Process

 VM implements read/write/execute permissions
 Extend page table entries with permission bits
 MMU checks these permission bits on every memory access

• If violated, raises exception and OS sends SIGSEGV signal to process
(segmentation fault)

7

•••

Physical
Address Space

PP 2

PP 4

PP 6

PP 8
PP 9

PP 11

Process i: PPNWRITE EXEC
PP 6No No
PP 4No Yes
PP 2Yes No

READ
Yes
Yes
Yes

VP 0:
VP 1:
VP 2:

Yes
Yes
Yes

Valid

Process j: WRITE EXEC
PP 9Yes No
PP 6No No

PP 11Yes No

READ
Yes
Yes
Yes

VP 0:
VP 1:
VP 2:

Yes
Yes
Yes

Valid PPN

CSE351, Spring 2018L21: Virtual Memory II

Address Translation: Page Hit

8

1) Processor sends virtual address to MMU (memory management unit)

2-3) MMU fetches PTE from page table in cache/memory
(Uses PTBR to find beginning of page table for current process)

4) MMU sends physical address to cache/memory requesting data

5) Cache/memory sends data to processor

MMU Cache/
MemoryPA

Data

CPU
VA

CPU Chip PTEA

PTE
1

2

3

4

5

VA = Virtual Address PTEA = Page Table Entry Address PTE= Page Table Entry
PA = Physical Address Data = Contents of memory stored at VA originally requested by CPU

CSE351, Spring 2018L21: Virtual Memory II

Address Translation: Page Fault

9

1) Processor sends virtual address to MMU
2-3) MMU fetches PTE from page table in cache/memory
4) Valid bit is zero, so MMU triggers page fault exception
5) Handler identifies victim (and, if dirty, pages it out to disk)
6) Handler pages in new page and updates PTE in memory
7) Handler returns to original process, restarting faulting instruction

MMU Cache/
Memory

CPU VA

CPU Chip PTEA

PTE
1

2

3

4

5

Disk

Page fault handler

Victim page

New page

Exception

6

7

CSE351, Spring 2018L21: Virtual Memory II

Hmm… Translation Sounds Slow

 The MMU accesses memory twice: once to get the
PTE for translation, and then again for the actual
memory request
 The PTEs may be cached in L1 like any other memory word

• But they may be evicted by other data references

• And a hit in the L1 cache still requires 1-3 cycles

 What can we do to make this faster?
 Solution: add another cache! 🎉🎉

10

CSE351, Spring 2018L21: Virtual Memory II

Speeding up Translation with a TLB

 Translation Lookaside Buffer (TLB):
 Small hardware cache in MMU
 Maps virtual page numbers to physical page numbers
 Contains complete page table entries for small number of

pages
• Modern Intel processors have 128 or 256 entries in TLB

 Much faster than a page table lookup in cache/memory

11

TLB

PTEVPN →

PTEVPN →

PTEVPN →

CSE351, Spring 2018L21: Virtual Memory II

TLB Hit

 A TLB hit eliminates a memory access!

12

MMU
Cache/
Memory

PA

Data

CPU
VA

CPU Chip

PTE

1

2

4

5

TLB

VPN 3

TLB

PTEVPN →

PTEVPN →

PTEVPN →

CSE351, Spring 2018L21: Virtual Memory II

TLB Miss

 A TLB miss incurs an additional memory access (the PTE)
 Fortunately, TLB misses are rare

13

MMU
Cache/
MemoryPA

Data

CPU
VA

CPU Chip

PTE

1

2

5

6

TLB

VPN

4

PTEA

3

TLB

PTEVPN →

PTEVPN →

PTEVPN →

CSE351, Spring 2018L21: Virtual Memory II

Fetching Data on a Memory Read

1) Check TLB
 Input: VPN, Output: PPN
 TLB Hit: Fetch translation, return PPN
 TLB Miss: Check page table (in memory)

• Page Table Hit: Load page table entry into TLB
• Page Fault: Fetch page from disk to memory, update corresponding

page table entry, then load entry into TLB

2) Check cache
 Input: physical address [unlike we said!], Output: data
 Cache Hit: Return data value to processor
 Cache Miss: Fetch data value from memory, store it in cache,

return it to processor
14

CSE351, Spring 2018L21: Virtual Memory II

Address Translation

15

Virtual Address

TLB
Lookup

Check
Page Table

Update
TLB

Page Fault
(OS loads page)

Protection
Check

Physical
Address

TLB Miss TLB Hit

Page not
in Mem

Access
Denied

Access
Permitted

Protection
Fault

SIGSEGV

Page
in Mem

Check cacheFind in Disk Find in Mem

CSE351, Spring 2018L21: Virtual Memory II

Context Switching Revisited

 What needs to happen when the CPU switches
processes?
 Registers:

• Save state of old process, load state of new process
• Including the Page Table Base Register (PTBR)

 Memory:
• Nothing to do! Pages for processes already exist in memory/disk and

protected from each other

 TLB:
• Invalidate all entries in TLB – mapping is for old process’ VAs

 Cache:
• Can leave alone because storing based on PAs – good for shared data

16

CSE351, Spring 2018L21: Virtual Memory II

Summary of Address Translation Symbols

 Basic Parameters
 N = 2𝑛𝑛 Number of addresses in virtual address space
 M = 2𝑚𝑚 Number of addresses in physical address space
 P = 2𝑝𝑝 Page size (bytes)

 Components of the virtual address (VA)
 VPO Virtual page offset
 VPN Virtual page number
 TLBI TLB index
 TLBT TLB tag

 Components of the physical address (PA)
 PPO Physical page offset (same as VPO)
 PPN Physical page number

17

CSE351, Spring 2018L21: Virtual Memory II

Page Table Reality

 Just one issue… the numbers don’t work out for the
story so far!

 The problem is the page table for each process:
 Suppose 64-bit VAs, 8 KiB pages, 8 GiB physical memory
 How many page table entries is that?

 About how long is each PTE?

 Moral: Cannot use this naïve implementation of the
virtual→physical page mapping – it’s way too big
• Wouldn’t work even if each PTE was one bit!

18

CSE351, Spring 2018L21: Virtual Memory II

A Solution: Multi-level Page Tables

19

Page table
base register

(PTBR)

VPN 1
0p-1n-1

VPOVPN 2 ... VPN k

PPN

0p-1m-1
PPOPPN

Virtual Address

Physical Address

... ...

Level 1
page table

Level 2
page table

Level k
page table

TLB

PTEVPN →

PTEVPN →

PTEVPN →

This is called a page walk

CSE351, Spring 2018L21: Virtual Memory II

Multi-level Page Tables

 A tree of depth 𝑘𝑘 where each node at depth 𝑖𝑖 has up to 2𝑗𝑗
children if part 𝑖𝑖 of the VPN has 𝑗𝑗 bits

 Hardware for multi-level page tables inherently more
complicated (built for a specific tree shape!)
 A necessary complexity – 1-level Does. Not. Fit.

 Why it works: Most subtrees are not used at all, so they are
never created and definitely aren’t in physical memory
 Parts created can be evicted from cache/memory when not being used
 Each node can have a size of ~1-100KB

 But now for a 𝑘𝑘-level page table, a TLB miss requires 𝑘𝑘 + 1
cache/memory accesses
 Fine so long as TLB misses are rare – motivates larger TLBs and larger

page size

20

CSE351, Spring 2018L21: Virtual Memory II

Wrap-Up
 Without VM, our prior view of program execution wouldn’t work!
 No room in RAM for the full address space of a process
 No way to isolate processes from each other

 Implementing VM efficiently requires substantial hardware complexity
 Multi-level page tables, page faults, PTBR, TLB, …
 Provided by all processors that support OSes that protect separate

processes

 OS has to service page faults by updating page tables

 Application programmers can largely ignore VM (a valuable abstraction!)
 Which is why you probably had never heard of it
 Keep working set small with good locality to avoid thrashing

21

	Virtual Memory II�CSE 351 Spring 2018
	Virtual Memory (VM)
	Review: Terminology
	VM for Managing Multiple Processes
	Simplifying Linking and Loading
	VM for Protection and Sharing
	Memory Protection Within Process
	Address Translation: Page Hit
	Address Translation: Page Fault
	Hmm… Translation Sounds Slow
	Speeding up Translation with a TLB
	TLB Hit
	TLB Miss
	Fetching Data on a Memory Read
	Address Translation
	Context Switching Revisited
	Summary of Address Translation Symbols
	Page Table Reality
	A Solution: Multi-level Page Tables
	Multi-level Page Tables
	Wrap-Up

