YW UNIVERSITY of WASHINGTON L18: Caches Il CSE351, Spring 2018

Caches Il

CSE 351 Spring 2018

I™M SORRY, \JE(ANT APPROVE
THIS PERMIT. YOUR LAND ISNT
ZONED FOR GIANT-MONEY-BIN
(CONSTRUCTION.
ALSO, YOUKE
\

e

https://what-if.xkcd.com/111/

https://what-if.xkcd.com/111/

YW UNIVERSITY of WASHINGTON L18: Caches Il

Making memory accesses fast!

» Cache basics
» Principle of locality
» Memory hierarchies

» Cache organization

" Direct-mapped (sets; index + tag)
= Associativity (ways)

= Replacement policy

®" Handling writes

o

+» Program optimizations that consider caches

CSE351, Spring 2018

YW UNIVERSITY of WASHINGTON

L18: Cacheslll

~NOo ol wWN - O

Associativity

CSE351, Spring 2018

+ What if we could store data in any place in the cache?

= More complicated hardware = more power consumed, slower

+» So we combine the two ideas:
= Each address maps to exactly one set

= Each set can store block in more than one way

1-way:
8 sets,
1 block each

direct mapped

2-way':
4 sets,
2 blocks each

Set

4-way:
2 sets,
4 blocks each

Set

8-way:
1 set,
8 blocks
Set
0

fully associative3

YW UNIVERSITY of WASHINGTON L18: Caches Il

CSE351, Spring 2018

uses “b” for offset bits

Cache Organization (3) [Sen " for offsct o]

+ Associativity (E): # of ways for each set
® Such a cache is called an “E-way set associative cache”

= We now index into cache sets, of which there are C/K/E
" Use lowest log,(C/K/E) = s bits of block address

- Direct-mapped: E =1,s0s=1log,(C/K) as we saw previously
- Fully associative: E =C/K, so s =0 bits

Used for tag comparison Selects the set Selects the byte from block
f f f
Tag (1) Index (s) Offset (k)

: e — Increasing associativity
Decreasing associativity «—

| Fully associative
| (only one set)

Direct mapped
(only one way)

YW UNIVERSITY of WASHINGTON

L18: Cacheslll

Example Placement

CSE351, Spring 2018

block size: 16 B
capacity: 8 blocks
address: 16 bits

< Where would data from address Ox1833 be placed?

= Binary: Ob 0001 1000 0011 0011

=m-s-k s=log,(C/K/E) k=Ilog,(K)

m-bit address: Tag (1) Index (s) Offset (k)
s=7 s=7 §=7
Direct-mapped 2-way set associative 4-way set associative
Set Tag Data Set Tag Data Set Tag Data
0 0
1
0
2 1
3
4 2
5
1
6 3
7

YW UNIVERSITY of WASHINGTON L18: Caches Il CSE351, Spring 2018

Block Replacement

+» Any empty block in the correct set may be used to store block

+ If there are no empty blocks, which one should we replace?
= No choice for direct-mapped caches

= Caches typically use something close to least recently used (LRU)
(hardware usually implements “not most recently used”)

Direct-mapped 2-way set associative 4-way set associative
Set Tag Data Set Tag Data Set Tag Data
0 0
1
0
2 1
3
4 2
5
1
6 3
7

YW UNIVERSITY of WASHINGTON L18: Caches Il CSE351, Spring 2018

Peer Instruction Question

+ We have a cache of size 2 KiB with block size of 128 B.
If our cache has 2 sets, what is its associativity?

A.

B. 4

C. 8

D. 16

E. We're lost...

+ If addresses are 16 bits wide, how wide is the Tag
field?

YW UNIVERSITY of WASHINGTON L18: Caches Il CSE351, Spring 2018

General Cache Organization (S, E, K)

E = blocks/lines per set
A

' N\
. —
([3 B M)
(block plus
¢eeo management bits)
S = # sets < TR X
=25
O 0000000000 000OCOCEOGEOEOOOEOOEOOS® O®OO
([3 B M)
\.
Cache size:
C =K X E XS data bytes
Lv_| Tag olzl2]:----- K-1 (doesn’t include V or Tag)
4 — _/
valid bit v

K = bytes per block

L18: Caches CSES351, Spring 2018

YW UNIVERSITY of WASHINGTON

Notation Review

+» We just introduced a lot of new variable names!

= Please be mindful of block size notation when you look at
past exam questions or are watching videos

Block size K (B in book)
Cache size C
M=2"om=log, M
Associativity E S=25os=1log,S
Number of Sets S K=2ck=1log,K
Address space M
C=KXEXS
Address width m s = log,(C/K/E)
Tag field width m=:.+4+s+k
Index field width S

Offset field width ~ k (b in book)

YW UNIVERSITY of WASHINGTON L18: Caches Il CSE351, Spring 2018

CaChe Read Z Locate set

Check if any line in set
is valid and has

E = blocks/lines per set matching tag: hit
e A ~ 3) Locate data starting
4 at offset
[3 I)

Address of byte in memory:

ee° @bits | sbits | k bits
5= #Ssets< eee tag set block
=2 index offset
o000
(B I J
\.
data begins at this offset
v tag OJ1)2] ccce- K-1
_ _ — _
valid bit M

K = bytes per block 10

YW UNIVERSITY of WASHINGTON L18: Caches Il CSE351, Spring 2018

Example: Direct-Mapped Cache (£ =1)

Direct-mapped: One line per set
Block Size K =8 B

4 Address of int:

Y tag or1112\|314||5161]7 -

@ bits 0..01 | 100
Y tag or1112\|314||5161]7 -
find set
S=255ets<
Y tag or1112\|314||5161]7
[I I)

Y tag or1112\|314||5161]7

\.

11

YW UNIVERSITY of WASHINGTON L18: Caches Il CSE351, Spring 2018

Example: Direct-Mapped Cache (E =1)

Direct-mapped: One line per set
Block Size K =8 B

Address of 1nt:
@ bits 0..01 | 100

valid? + match?: yes = hit

Y tag Oj1]12]|314]|51]16]1]7

block offset

12

YW UNIVERSITY of WASHINGTON L18: Caches Il CSE351, Spring 2018

Example: Direct-Mapped Cache (E =1)

Direct-mapped: One line per set
Block Size K =8 B

Address of 1nt:
@ bits 0..01 | 100

valid? + match?: yes = hit

Y tag Oj1]12]|314]5161]1]7
block offset
INnt (4 B) is here
(48) This is why we
want alignment!

No match? Then old line gets evicted and replaced

13

YW UNIVERSITY of WASHINGTON L18: Caches Il CSE351, Spring 2018

Example: Set-Associative Cache (E = 2)

2-way: Two lines per set

Block Size K = 8 B Address of short iInt:

G bits 0..01 | 100

v tag | |0]1]2]3]14]5]6]7 v tag Oj112)13|4|151]6]|]7
V] [| [olal2[zTals e 71 H[v] [e) [o]x[2]z]a]s]6]7]] — find set
v |tag | lofa]2l3]als]el7)| [Lv) [e] [o]2l2]3f4]5]6]7
o000
v |t | lo]al2]3]als]el7]| ILv] | e] lo]al2]3]4]5]6]7

14

YW UNIVERSITY of WASHINGTON L18: Caches Il CSE351, Spring 2018

Example: Set-Associative Cache (E = 2)

2-way: Two lines per set

Block Size K = 8 B Address of short Int:

G bits 0..01 | 100

compare both

valid? + | match: yes = hit

% tag|01234567 Y tag oj1j21314|516\|7}| —

block offset

15

YW UNIVERSITY of WASHINGTON L18: Caches Il CSE351, Spring 2018

Example: Set-Associative Cache (E = 2)

2-way: Two lines per set

Block Size K = 8 B Address of short iInt:

G bits 0..01 | 100

compare both

valid? + | match: yes = hit

vV tag Oj112]13}]4}5161]7 vV tag oj1j21314|516|7}| —

block offset

short Int (2 B)is here

No match?
* Oneline in set is selected for eviction and replacement
* Replacement policies: random, least recently used (LRU), ...

16

YW UNIVERSITY of WASHINGTON L18: Caches Il CSE351, Spring 2018

Types of Cache Misses: 3 C’s!

% Compulsory (cold) miss
= QOccurs on first access to a block
«» Conflict miss

= Conflict misses occur when the cache is large enough, but multiple data
objects all map to the same slot
« e.g. referencing blocks 0, 8, 0, 8, ... could miss every time
= Direct-mapped caches have more conflict misses than
E-way set-associative (where E > 1)
« Capacity miss

= Occurs when the set of active cache blocks (the working set)

is larger than the cache (just won’t fit, even if cache was fully-
associative)

= Note: Fully-associative only has Compulsory and Capacity misses

17

YW UNIVERSITY of WASHINGTON L18: Caches Il CSE351, Spring 2018

What about writes?

>

Multiple copies of data exist:
= |1, L2, possibly L3, main memory

What to do on a write-hit?
= Write-through: write immediately to next level

0‘0

= Write-back: defer write to next level until line is evicted (replaced)
« Must track which cache lines have been modified (“dirty bit”)

0‘0

What to do on a write-miss?

= Write-allocate: (“fetch on write”) load into cache, update line in cache
« Good if more writes or reads to the location follow

= No-write-allocate: (“write around”) just write immediately to memory

>

Typical caches:
= Write-back + Write-allocate, usually
= Write-through + No-write-allocate, occasionally

18

YW UNIVERSITY of WASHINGTON L18: Caches Il CSE351, Spring 2018

Write-back, write-allocate example

Contents of memory stored at address G

v
Cache G OxBEEF 0l < dirty bit
D%l

e

tag (there is only one set in this tiny cache, so the tag is the entire block address!)

In this example we are sort of
F
Memory OXCAFE ignoring block offsets. Here a block
G OxXBEEF holds 2 bytes (16 bits, 4 hex digits).

Normally a block would be much
bigger and thus there would be
multiple items per block. While only
one item in that block would be
written at a time, the entire line would
be brought into cache. 19

YW UNIVERSITY of WASHINGTON L18: Caches Il CSE351, Spring 2018

Write-back, write-allocate example

mov OXFACE, F

Cache G OxBEEF 0| [<— dirty bit

Memory F OxCAFE
G OXBEEF

20

YW UNIVERSITY of WASHINGTON L18: Caches Il CSE351, Spring 2018

Write-back, write-allocate example

mov OXFACE, F

Cache F OxCAFE 0| [dirty bit

Step 1: Bring F into cache

Memory F OxCAFE
G OXBEEF

21

YW UNIVERSITY of WASHINGTON L18: Caches Il CSE351, Spring 2018

Write-back, write-allocate example

mov OXFACE, F

Cache F OxFACE 1| [dirty bit

Step 2: Write OXFACE
to cache only and set

dirty bit

Memory F OxCAFE
G OXBEEF

22

YW UNIVERSITY of WASHINGTON L18: Caches Il CSE351, Spring 2018

Write-back, write-allocate example

mov OXFACE, F mov OXFEED, F

Cache F OXFACE 1| < dirty bit
Write hit!
Write OXFEED to
cache only
Memory F OxCAFE

G OxBEEF

23

YW UNIVERSITY of WASHINGTON L18: Caches Il CSE351, Spring 2018

Write-back, write-allocate example

mov OXFACE, F mov OXFEED, F mov G, %rax
Cache F OXFEED 1| [dirty bit
Memory F OxCAFE

G OxBEEF

24

YW UNIVERSITY of WASHINGTON L18: Caches Il CSE351, Spring 2018

Write-back, write-allocate example

mov OXFACE, F mov OXFEED, F mov G, %rax

Cache G OxBEEF 0l < dirty bit

1. Write F back to memory
since it is dirty

2. Bring G into the cache so

Memory F OXFEED we can copy it into %rax

G OxBEEF

25

YA UNIVERSITY of WASHINGTON L18: Caches Il CSE351, Spring 2018

Peer Instruction Question

« Which of the following cache statements is FALSE?

A. We can reduce compulsory misses by decreasing
our block size

B. We can reduce conflict misses by increasing
associativity

C. A write-back cache will save time for code with
good temporal locality on writes

D. A write-through cache will always match data
with the memory hierarchy level below it

E. We're lost...

26

YW UNIVERSITY of WASHINGTON

L18: Cacheslll

Example Cache Parameters Problem

CSE351, Spring 2018

+» 1 MiB address space, 125 cycles to go to memory.

Fill in the following table:

Cache Size 4 KiB
Block Size 16 B
Associativity 4-way

Hit Time 3 cycles
Miss Rate 20%
Write Policy Write-through
Replacement Policy LRU
Tag Bits 10
Index Bits 6
Offset Bits 4
AMAT AMAT =

3+0.2*%125=28

27

YW UNIVERSITY of WASHINGTON L18: Caches Il CSE351, Spring 2018

Example Code Analysis Problem

+ Assuming the cache starts cold (all blocks invalid),

calculate the miss rate for the following loop:
" m=20bits, C=4KiB,K=16B,E =4
#define AR_SIZE 2048
int int_ar[AR_SIZE], sum=0; // &int_ar=0x80000
for (int 1=0; 1<AR_SIZE; 1++)
sum += 1nt_ar[i];
for (int jJ=AR_SIZE-1; j>=0; j--)
sum += Int_ar[i];

28

YW UNIVERSITY of WASHINGTON L18: Caches Il CSE351, Spring 2018

Cache-Friendly Code

+» Programmer can optimize for cache performance
®" How data structures are organized

*" How data are accessed
« Nested loop structure
- Blocking is a general technique

+ All systems favor “cache-friendly code”

" Getting absolute optimum performance is very platform
specific
« Cache sizes, line sizes, associativities, etc.
" Can get most of the advantage with generic code
- Keep working set reasonably small (temporal locality)
« Use small strides (spatial locality)
« Focus on inner loop code

YW UNIVERSITY of WASHINGTON L18: Caches Il CSE351, Spring 2018

Where else is caching used?

» Caching is one of the biggest ideas in CSE, far beyond the
hardware memory hierarchy

» Use a faster set of a subset of the data to exploit temporal and
spatial locality

= At the end of Summer, grab a few jackets from the bedroom closet and
leave them near the door

YW UNIVERSITY of WASHINGTON L18: Caches Il CSE351, Spring 2018

Software Caches are More Flexible

+» Examples
= File system buffer caches, web browser caches, etc.

+» Some design differences
= Almost always fully-associative
« 50, no placement restrictions
- index structures like hash tables are common (for placement)
= Often use complex replacement policies
« misses are very expensive when disk or network involved
- worth thousands of cycles to avoid them
" Not necessarily constrained to single “block” transfers
- may fetch or write-back in larger units, opportunistically

	Caches III�CSE 351 Spring 2018
	Making memory accesses fast!
	Associativity
	Cache Organization (3)
	Example Placement
	Block Replacement
	Peer Instruction Question
	General Cache Organization (𝑆, 𝐸, 𝐾)
	Notation Review
	Cache Read
	Example: Direct-Mapped Cache (𝐸 = 1)
	Example: Direct-Mapped Cache (𝐸 = 1)
	Example: Direct-Mapped Cache (𝐸 = 1)
	Example: Set-Associative Cache (𝐸 = 2)
	Example: Set-Associative Cache (𝐸 = 2)
	Example: Set-Associative Cache (𝐸 = 2)
	Types of Cache Misses: 3 C’s!
	What about writes?
	Write-back, write-allocate example
	Write-back, write-allocate example
	Write-back, write-allocate example
	Write-back, write-allocate example
	Write-back, write-allocate example
	Write-back, write-allocate example
	Write-back, write-allocate example
	Peer Instruction Question
	Example Cache Parameters Problem
	Example Code Analysis Problem
	Cache-Friendly Code
	Slide Number 30
	Slide Number 31

