
CSE351, Spring 2018L18: Caches III

Caches III
CSE 351 Spring 2018

https://what-if.xkcd.com/111/

https://what-if.xkcd.com/111/

CSE351, Spring 2018L18: Caches III

Making memory accesses fast!

 Cache basics
 Principle of locality
 Memory hierarchies
 Cache organization
 Direct-mapped (sets; index + tag)
 Associativity (ways)
 Replacement policy
 Handling writes

 Program optimizations that consider caches

2

CSE351, Spring 2018L18: Caches III

Associativity
 What if we could store data in any place in the cache?
 More complicated hardware = more power consumed, slower

 So we combine the two ideas:
 Each address maps to exactly one set
 Each set can store block in more than one way

3

0
1
2
3
4
5
6
7

0

1

2

3

Set

0

1

Set

1-way:
8 sets,

1 block each

2-way:
4 sets,

2 blocks each

4-way:
2 sets,

4 blocks each

0

Set

8-way:
1 set,

8 blocks

direct mapped fully associative

CSE351, Spring 2018L18: Caches III

Cache Organization (3)

 Associativity (𝐸𝐸): # of ways for each set
 Such a cache is called an “𝐸𝐸-way set associative cache”
 We now index into cache sets, of which there are 𝐶𝐶/𝐾𝐾/𝐸𝐸
 Use lowest log2 𝐶𝐶/𝐾𝐾/𝐸𝐸 = 𝒔𝒔 bits of block address

• Direct-mapped: 𝐸𝐸 = 1, so 𝒔𝒔 = log2 𝐶𝐶/𝐾𝐾 as we saw previously
• Fully associative: 𝐸𝐸 = 𝐶𝐶/𝐾𝐾, so 𝒔𝒔 = 0 bits

4

Decreasing associativity
Fully associative
(only one set)Direct mapped

(only one way)

Increasing associativity

Selects the setUsed for tag comparison Selects the byte from block

Tag (𝒕𝒕) Index (𝒔𝒔) Offset (𝒌𝒌)

Note: The textbook
uses “b” for offset bits

CSE351, Spring 2018L18: Caches III

Example Placement

 Where would data from address 0x1833 be placed?
 Binary: 0b 0001 1000 0011 0011

5

𝒔𝒔 = ?

block size: 16 B
capacity: 8 blocks
address: 16 bits

Set Tag Data
0
1
2
3
4
5
6
7

Direct-mapped
Set Tag Data

0

1

2

3

Set Tag Data

0

1

2-way set associative 4-way set associative

Tag (𝒕𝒕) Offset (𝒌𝒌)𝒎𝒎-bit address: Index (𝒔𝒔)

𝒔𝒔 = log2 𝐶𝐶/𝐾𝐾/𝐸𝐸 𝒌𝒌 = log2 𝐾𝐾𝒕𝒕 = 𝒎𝒎–𝒔𝒔–𝒌𝒌

𝒔𝒔 = ? 𝒔𝒔 = ?

CSE351, Spring 2018L18: Caches III

Block Replacement
 Any empty block in the correct set may be used to store block
 If there are no empty blocks, which one should we replace?
 No choice for direct-mapped caches
 Caches typically use something close to least recently used (LRU)

(hardware usually implements “not most recently used”)

6

Set Tag Data
0
1
2
3
4
5
6
7

Direct-mapped
Set Tag Data

0

1

2

3

Set Tag Data

0

1

2-way set associative 4-way set associative

CSE351, Spring 2018L18: Caches III

Peer Instruction Question

 We have a cache of size 2 KiB with block size of 128 B.
If our cache has 2 sets, what is its associativity?
A. 2
B. 4
C. 8
D. 16
E. We’re lost…

 If addresses are 16 bits wide, how wide is the Tag
field?

7

CSE351, Spring 2018L18: Caches III

General Cache Organization (𝑆𝑆, 𝐸𝐸, 𝐾𝐾)

8

𝐸𝐸 = blocks/lines per set

𝑆𝑆 = # sets
= 2𝒔𝒔

set

“line” (block plus
management bits)

0 1 2 K-1TagV

valid bit 𝐾𝐾 = bytes per block

Cache size:
𝐶𝐶 = 𝐾𝐾 × 𝐸𝐸 × 𝑆𝑆 data bytes
(doesn’t include V or Tag)

CSE351, Spring 2018L18: Caches III

Notation Review

 We just introduced a lot of new variable names!
 Please be mindful of block size notation when you look at

past exam questions or are watching videos

9

Variable This Quarter Formulas

Block size 𝐾𝐾 (𝐵𝐵 in book)

𝑀𝑀 = 2𝑚𝑚 ↔𝑚𝑚 = log2 𝑀𝑀
𝑆𝑆 = 2𝒔𝒔 ↔ 𝒔𝒔 = log2 𝑆𝑆
𝐾𝐾 = 2𝒌𝒌 ↔ 𝒌𝒌 = log2 𝐾𝐾

𝐶𝐶 = 𝐾𝐾 × 𝐸𝐸 × 𝑆𝑆
𝒔𝒔 = log2 𝐶𝐶/𝐾𝐾/𝐸𝐸
𝒎𝒎 = 𝒕𝒕 + 𝒔𝒔 + 𝒌𝒌

Cache size 𝐶𝐶
Associativity 𝐸𝐸

Number of Sets 𝑆𝑆
Address space 𝑀𝑀
Address width 𝒎𝒎
Tag field width 𝒕𝒕

Index field width 𝒔𝒔
Offset field width 𝒌𝒌 (𝒃𝒃 in book)

CSE351, Spring 2018L18: Caches III

Cache Read

10

0 1 2 K-1tagv

𝒕𝒕 bits 𝒔𝒔 bits 𝒌𝒌 bits
Address of byte in memory:

tag set
index

block
offset

data begins at this offset

1) Locate set
2) Check if any line in set

is valid and has
matching tag: hit

3) Locate data starting
at offset

valid bit

𝑆𝑆 = # sets
= 2𝒔𝒔

𝐸𝐸 = blocks/lines per set

𝐾𝐾 = bytes per block

CSE351, Spring 2018L18: Caches III

Example: Direct-Mapped Cache (𝐸𝐸 = 1)

11

Direct-mapped: One line per set
Block Size 𝐾𝐾 = 8 B

𝒕𝒕 bits 0…01 100
Address of int:

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

find set

𝑆𝑆 = 2𝒔𝒔 sets

CSE351, Spring 2018L18: Caches III

Example: Direct-Mapped Cache (𝐸𝐸 = 1)

12

𝒕𝒕 bits 0…01 100
Address of int:

0 1 2 7tagv 3 654

match?: yes = hitvalid? +

block offset

Direct-mapped: One line per set
Block Size 𝐾𝐾 = 8 B

CSE351, Spring 2018L18: Caches III

Example: Direct-Mapped Cache (𝐸𝐸 = 1)

13

𝒕𝒕 bits 0…01 100
Address of int:

0 1 2 7tagv 3 654

match?: yes = hitvalid? +

int (4 B) is here

block offset

No match? Then old line gets evicted and replaced

This is why we
want alignment!

Direct-mapped: One line per set
Block Size 𝐾𝐾 = 8 B

CSE351, Spring 2018L18: Caches III

Example: Set-Associative Cache (𝐸𝐸 = 2)

14

𝒕𝒕 bits 0…01 100
Address of short int:

find set

0 1 2 7tagv 3 6540 1 2 7tagv 3 654

0 1 2 7tagv 3 6540 1 2 7tagv 3 654

0 1 2 7tagv 3 6540 1 2 7tagv 3 654

0 1 2 7tagv 3 6540 1 2 7tagv 3 654

2-way: Two lines per set
Block Size 𝐾𝐾 = 8 B

CSE351, Spring 2018L18: Caches III

0 1 2 7tagv 3 6540 1 2 7tagv 3 654

Example: Set-Associative Cache (𝐸𝐸 = 2)

15

𝒕𝒕 bits 0…01 100
compare both

valid? + match: yes = hit

block offset

tag

2-way: Two lines per set
Block Size 𝐾𝐾 = 8 B Address of short int:

CSE351, Spring 2018L18: Caches III

0 1 2 7tagv 3 6540 1 2 7tagv 3 654

Example: Set-Associative Cache (𝐸𝐸 = 2)

16

𝒕𝒕 bits 0…01 100

valid? + match: yes = hit

block offset

short int (2 B) is here

No match?
• One line in set is selected for eviction and replacement
• Replacement policies: random, least recently used (LRU), …

compare both

Address of short int:
2-way: Two lines per set
Block Size 𝐾𝐾 = 8 B

CSE351, Spring 2018L18: Caches III

Types of Cache Misses: 3 C’s!
 Compulsory (cold) miss
 Occurs on first access to a block

 Conflict miss
 Conflict misses occur when the cache is large enough, but multiple data

objects all map to the same slot
• e.g. referencing blocks 0, 8, 0, 8, ... could miss every time

 Direct-mapped caches have more conflict misses than
𝐸𝐸-way set-associative (where 𝐸𝐸 > 1)

 Capacity miss
 Occurs when the set of active cache blocks (the working set)

is larger than the cache (just won’t fit, even if cache was fully-
associative)

 Note: Fully-associative only has Compulsory and Capacity misses

17

CSE351, Spring 2018L18: Caches III

What about writes?
 Multiple copies of data exist:
 L1, L2, possibly L3, main memory

 What to do on a write-hit?
 Write-through: write immediately to next level
 Write-back: defer write to next level until line is evicted (replaced)

• Must track which cache lines have been modified (“dirty bit”)

 What to do on a write-miss?
 Write-allocate: (“fetch on write”) load into cache, update line in cache

• Good if more writes or reads to the location follow
 No-write-allocate: (“write around”) just write immediately to memory

 Typical caches:
 Write-back + Write-allocate, usually
 Write-through + No-write-allocate, occasionally

18

CSE351, Spring 2018L18: Caches III

Write-back, write-allocate example

19

0xBEEFCache

Memory

G

0xCAFE

0xBEEF

0

F

G

dirty bit

tag (there is only one set in this tiny cache, so the tag is the entire block address!)

In this example we are sort of
ignoring block offsets. Here a block
holds 2 bytes (16 bits, 4 hex digits).

Normally a block would be much
bigger and thus there would be
multiple items per block. While only
one item in that block would be
written at a time, the entire line would
be brought into cache.

Contents of memory stored at address G

CSE351, Spring 2018L18: Caches III

Write-back, write-allocate example

20

0xBEEFCache

Memory

G

0xCAFE

0xBEEF

0

F

G

mov 0xFACE, F

dirty bit

CSE351, Spring 2018L18: Caches III

0xBEEFU 0

Write-back, write-allocate example

21

0xCAFECache

Memory

F

0xCAFE

0xBEEF

F

G

dirty bit0xCAFE 0

Step 1: Bring F into cache

mov 0xFACE, F

CSE351, Spring 2018L18: Caches III

0xBEEFU 0

Write-back, write-allocate example

22

0xCAFECache

Memory

F

0xCAFE

0xBEEF

F

G

dirty bit0xFACE 1

Step 2: Write 0xFACE
to cache only and set
dirty bit

mov 0xFACE, F

CSE351, Spring 2018L18: Caches III

0xBEEFU 0

Write-back, write-allocate example

23

0xCAFECache

Memory

F

0xCAFE

0xBEEF

F

G

mov 0xFEED, F

dirty bit0xFACE 1

Write hit!
Write 0xFEED to

cache only

mov 0xFACE, F

CSE351, Spring 2018L18: Caches III

0xBEEFU 0

Write-back, write-allocate example

24

0xCAFECache

Memory

F

0xCAFE

0xBEEF

F

G

mov G, %rax

dirty bit0xFEED 1

mov 0xFEED, Fmov 0xFACE, F

CSE351, Spring 2018L18: Caches III

Write-back, write-allocate example

25

0xBEEFCache

Memory

G

0xFEED

0xBEEF

0

F

G

dirty bit

1. Write F back to memory
since it is dirty

2. Bring G into the cache so
we can copy it into %rax

mov G, %raxmov 0xFEED, Fmov 0xFACE, F

CSE351, Spring 2018L18: Caches III

Peer Instruction Question

 Which of the following cache statements is FALSE?
A. We can reduce compulsory misses by decreasing

our block size
B. We can reduce conflict misses by increasing

associativity
C. A write-back cache will save time for code with

good temporal locality on writes
D. A write-through cache will always match data

with the memory hierarchy level below it
E. We’re lost…

26

CSE351, Spring 2018L18: Caches III

 1 MiB address space, 125 cycles to go to memory.
Fill in the following table:

Example Cache Parameters Problem

27

Cache Size 4 KiB
Block Size 16 B

Associativity 4-way
Hit Time 3 cycles

Miss Rate 20%
Write Policy Write-through

Replacement Policy LRU
Tag Bits

Index Bits
Offset Bits

AMAT

10
6
4

AMAT =
3 + 0.2 * 125 = 28

CSE351, Spring 2018L18: Caches III

Example Code Analysis Problem

 Assuming the cache starts cold (all blocks invalid),
calculate the miss rate for the following loop:
 𝑚𝑚 = 20 bits, 𝐶𝐶 = 4 KiB, 𝐾𝐾 = 16 B, 𝐸𝐸 = 4
#define AR_SIZE 2048
int int_ar[AR_SIZE], sum=0; // &int_ar=0x80000

for (int i=0; i<AR_SIZE; i++)

sum += int_ar[i];

for (int j=AR_SIZE-1; j>=0; j--)

sum += int_ar[i];

28

CSE351, Spring 2018L18: Caches III

Cache-Friendly Code

 Programmer can optimize for cache performance
 How data structures are organized
 How data are accessed

• Nested loop structure
• Blocking is a general technique

 All systems favor “cache-friendly code”
 Getting absolute optimum performance is very platform

specific
• Cache sizes, line sizes, associativities, etc.

 Can get most of the advantage with generic code
• Keep working set reasonably small (temporal locality)
• Use small strides (spatial locality)
• Focus on inner loop code

CSE351, Spring 2018L18: Caches III

Where else is caching used?

 Caching is one of the biggest ideas in CSE, far beyond the
hardware memory hierarchy

 Use a faster set of a subset of the data to exploit temporal and
spatial locality
 At the end of Summer, grab a few jackets from the bedroom closet and

leave them near the door

CSE351, Spring 2018L18: Caches III

Software Caches are More Flexible

 Examples
 File system buffer caches, web browser caches, etc.

 Some design differences
 Almost always fully-associative

• so, no placement restrictions
• index structures like hash tables are common (for placement)

 Often use complex replacement policies
• misses are very expensive when disk or network involved
• worth thousands of cycles to avoid them

 Not necessarily constrained to single “block” transfers
• may fetch or write-back in larger units, opportunistically

	Caches III�CSE 351 Spring 2018
	Making memory accesses fast!
	Associativity
	Cache Organization (3)
	Example Placement
	Block Replacement
	Peer Instruction Question
	General Cache Organization (𝑆, 𝐸, 𝐾)
	Notation Review
	Cache Read
	Example: Direct-Mapped Cache (𝐸 = 1)
	Example: Direct-Mapped Cache (𝐸 = 1)
	Example: Direct-Mapped Cache (𝐸 = 1)
	Example: Set-Associative Cache (𝐸 = 2)
	Example: Set-Associative Cache (𝐸 = 2)
	Example: Set-Associative Cache (𝐸 = 2)
	Types of Cache Misses: 3 C’s!
	What about writes?
	Write-back, write-allocate example
	Write-back, write-allocate example
	Write-back, write-allocate example
	Write-back, write-allocate example
	Write-back, write-allocate example
	Write-back, write-allocate example
	Write-back, write-allocate example
	Peer Instruction Question
	Example Cache Parameters Problem
	Example Code Analysis Problem
	Cache-Friendly Code
	Slide Number 30
	Slide Number 31

