
CSE351, Spring 2018L17: Caches II

Caches II
CSE 351 Spring 2018

#include <yoda.h>

int is_try(int do_flag) {

return !(do_flag

|| !do_flag);

}

CSE351, Spring 2018L17: Caches II

Memory Hierarchies

 Some fundamental and enduring properties of
hardware and software systems:
 Faster storage technologies almost always cost more per

byte and have lower capacity
 The gaps between memory technology speeds are widening

• True for: registers ↔ cache, cache ↔ DRAM, DRAM ↔ disk, etc.

 Well-written programs tend to exhibit good locality

 These properties complement each other beautifully
 They suggest an approach for organizing memory and

storage systems known as a memory hierarchy

2

CSE351, Spring 2018L17: Caches II

An Example Memory Hierarchy

3

registers

on-chip L1
cache (SRAM)

main memory
(DRAM)

local secondary storage
(local disks)

Larger,
slower,
cheaper
per byte

remote secondary storage
(distributed file systems, web servers)

Local disks hold files
retrieved from disks on
remote network servers

Main memory holds disk blocks
retrieved from local disks

off-chip L2
cache (SRAM)

L1 cache holds cache lines retrieved from L2 cache

CPU registers hold words retrieved from L1 cache

L2 cache holds cache lines retrieved
from main memory

Smaller,
faster,
costlier
per byte

CSE351, Spring 2018L17: Caches II

An Example Memory Hierarchy

4

registers

on-chip L1
cache (SRAM)

main memory
(DRAM)

local secondary storage
(local disks)

Larger,
slower,
cheaper
per byte

remote secondary storage
(distributed file systems, web servers)

off-chip L2
cache (SRAM)

explicitly program-controlled
(e.g. refer to exactly %rax, %rbx)

Smaller,
faster,
costlier
per byte

program sees “memory”;
hardware manages caching

transparently

CSE351, Spring 2018L17: Caches II

Memory Hierarchies

 Fundamental idea of a memory hierarchy:
 For each level k, the faster, smaller device at level k serves

as a cache for the larger, slower device at level k+1

 Why do memory hierarchies work?
 Because of locality, programs tend to access the data at

level k more often than they access the data at level k+1
 Thus, the storage at level k+1 can be slower, and thus larger

and cheaper per bit

 Big Idea: The memory hierarchy creates a large pool
of storage that costs as much as the cheap storage
near the bottom, but that serves data to programs at
the rate of the fast storage near the top

5

CSE351, Spring 2018L17: Caches II

Intel Core i7 Cache Hierarchy

6

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core 0

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core 3

…

L3 unified cache
(shared by all cores)

Main memory

Processor package

Block size:
64 bytes for all caches

L1 i-cache and d-cache:
32 KiB, 8-way,
Access: 4 cycles

L2 unified cache:
256 KiB, 8-way,
Access: 11 cycles

L3 unified cache:
8 MiB, 16-way,
Access: 30-40 cycles

CSE351, Spring 2018L17: Caches II

Making memory accesses fast!

 Cache basics
 Principle of locality
 Memory hierarchies
 Cache organization
 Direct-mapped (sets; index + tag)
 Associativity (ways)
 Replacement policy
 Handling writes

 Program optimizations that consider caches

7

CSE351, Spring 2018L17: Caches II

Cache Organization (1)

 Block Size (𝐾𝐾): unit of transfer between $ and Mem
 Given in bytes and always a power of 2 (e.g. 64 B)
 Blocks consist of adjacent bytes (differ in address by 1)

• Spatial locality!

8

Note: The textbook
uses “B” for block size

CSE351, Spring 2018L17: Caches II

Cache Organization (1)

 Block Size (𝐾𝐾): unit of transfer between $ and Mem
 Given in bytes and always a power of 2 (e.g. 64 B)
 Blocks consist of adjacent bytes (differ in address by 1)

• Spatial locality!

 Offset field
 Low-order log2 𝐾𝐾 = 𝒌𝒌 bits of address tell you which byte

within a block
• (address) mod 2𝑛𝑛 = 𝑛𝑛 lowest bits of address

 (address) modulo (# of bytes in a block)

9

Block Number Block Offset𝒎𝒎-bit address:
(refers to byte in memory)

𝒌𝒌 bits𝒎𝒎− 𝒌𝒌 bits

Note: The textbook
uses “b” for offset bits

CSE351, Spring 2018L17: Caches II

Cache Organization (2)

 Cache Size (𝐶𝐶): amount of data the $ can store
 Cache can only hold so much data (subset of next level)
 Given in bytes (𝐶𝐶) or number of blocks (𝐶𝐶/𝐾𝐾)
 Example: 𝐶𝐶 = 32 KiB = 512 blocks if using 64-B blocks

 Where should data go in the cache?
 We need a mapping from memory addresses to specific

locations in the cache to make checking the cache for an
address fast

 What is a data structure that provides fast lookup?
 Hash table!

10

CSE351, Spring 2018L17: Caches II

Review: Hash Tables for Fast Lookup

11

0
1
2
3
4
5
6
7
8
9

Insert:
5
27
34

102
119

Apply hash function to map data
to “buckets”

CSE351, Spring 2018L17: Caches II

Place Data in Cache by Hashing Address

 Map to cache index from block
address
 Use next log2 𝐶𝐶/𝐾𝐾 = 𝒔𝒔 bits
 (block address) mod (# blocks in

cache)

12

Block Num Block Data
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Memory Cache
Index Block Data
00
01
10
11

Here 𝐾𝐾 = 4 B
and 𝐶𝐶/𝐾𝐾 = 4

CSE351, Spring 2018L17: Caches II

Place Data in Cache by Hashing Address

 Map to cache index from block
address
 Lets adjacent blocks fit in cache

simultaneously!
• Consecutive blocks go in consecutive

cache indices

13

Block Addr Block Data
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Memory Cache
Index Block Data
00
01
10
11

Here 𝐾𝐾 = 4 B
and 𝐶𝐶/𝐾𝐾 = 4

CSE351, Spring 2018L17: Caches II

Place Data in Cache by Hashing Address

 Collision!
 This might confuse the cache later

when we access the data
 Solution?

14

Block Addr Block Data
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Memory Cache
Index Block Data
00
01
10
11

Here 𝐾𝐾 = 4 B
and 𝐶𝐶/𝐾𝐾 = 4

CSE351, Spring 2018L17: Caches II

Tags Differentiate Blocks in Same Index

 Tag = rest of address bits
 𝒕𝒕 bits = 𝒎𝒎− 𝒔𝒔 − 𝒌𝒌
 Check this during a cache lookup

15

Block Addr Block Data
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Memory Cache
Index Tag Block Data
00 00
01
10 01
11 01

Here 𝐾𝐾 = 4 B
and 𝐶𝐶/𝐾𝐾 = 4

CSE351, Spring 2018L17: Caches II

Checking for a Requested Address

 CPU sends address request for chunk of data
 Address and requested data are not the same thing!

• Analogy: your friend ≠ his or her phone number

 TIO address breakdown:

 Index field tells you where to look in cache
 Tag field lets you check that data is the block you want
 Offset field selects specified start byte within block

 [So far] All a function of (a) block size K, (b) cache size C
16

Tag (𝒕𝒕) Offset (𝒌𝒌)𝒎𝒎-bit address:

Block Number

Index (𝒔𝒔)

CSE351, Spring 2018L17: Caches II

Cache Puzzle #1

 Based on the following behavior, which of the
following block sizes is NOT possible for our cache?
 Cache starts empty, also known as a cold cache
 Access (addr: hit/miss) stream:

• (14: miss), (15: hit), (16: miss)

A. 4 bytes
B. 8 bytes
C. 16 bytes
D. 32 bytes
E. We’re lost…

17

CSE351, Spring 2018L17: Caches II

Direct-Mapped Cache

 Hash function: (block address)
mod (# of blocks in cache)
 Each memory address maps to

exactly one index in the cache
 Fast (and simpler) to find an

address

18

Block Addr Block Data
00 00
00 01
00 10
00 11
01 00
01 01
01 10
01 11
10 00
10 01
10 10
10 11
11 00
11 01
11 10
11 11

Memory Cache
Index Tag Block Data
00 00
01 11
10 01
11 01

Here 𝐾𝐾 = 4 B
and 𝐶𝐶/𝐾𝐾 = 4

CSE351, Spring 2018L17: Caches II

Direct-Mapped Cache Problem

 What happens if we access the
following addresses?
 8, 24, 8, 24, 8, …?
 Conflict in cache (misses!)
 Rest of cache goes unused

 Solution?

19

Block Addr Block Data
00 00
00 01
00 10
00 11
01 00
01 01
01 10
01 11
10 00
10 01
10 10
10 11
11 00
11 01
11 10
11 11

Memory Cache
Index Tag Block Data
00 ??
01 ??
10
11 ??

Here 𝐾𝐾 = 4 B
and 𝐶𝐶/𝐾𝐾 = 4

CSE351, Spring 2018L17: Caches II

Associativity
 What if we could store data in any place in the cache?
 More complicated hardware = more power consumed, slower

 So we combine the two ideas:
 Each address maps to exactly one set
 Each set can store block in more than one way

20

0
1
2
3
4
5
6
7

0

1

2

3

Set

0

1

Set

1-way:
8 sets,

1 block each

2-way:
4 sets,

2 blocks each

4-way:
2 sets,

4 blocks each

0

Set

8-way:
1 set,

8 blocks

direct mapped fully associative

CSE351, Spring 2018L17: Caches II

A step back: Block size
 Cache mechanics are a lot of details
 Perfect for hardware instead of humans

 And/but there are high-level, beautiful engineering trade-offs throughout

 Advantages of bigger block size, K
 Fewer cache loads when spatial locality expands to more bytes (e.g., all

of large array)
 Can grow block size [within reason] without much more latency

• Already going to the store, so put a few more avocados in your bag

 Advantages of smaller block size, K
 Less energy/effort moving around data that may not be used
 More blocks for same C, so less eviction of data you might be using due

to other data you’re using

21

CSE351, Spring 2018L17: Caches II

The real world
 So hardware designers pick a K that seems to do well performance-wise for

Programs People Care About
 Rigorously studied both empirically (experiments) and analytically

(math)

 Then [new] software that Cares About Performance tries can take the
cache parameters (C, K, …) into account
 Data layout, loop structure, …

22

	Caches II�CSE 351 Spring 2018
	Memory Hierarchies
	An Example Memory Hierarchy
	An Example Memory Hierarchy
	Memory Hierarchies
	Intel Core i7 Cache Hierarchy
	Making memory accesses fast!
	Cache Organization (1)
	Cache Organization (1)
	Cache Organization (2)
	Review: Hash Tables for Fast Lookup
	Place Data in Cache by Hashing Address
	Place Data in Cache by Hashing Address
	Place Data in Cache by Hashing Address
	Tags Differentiate Blocks in Same Index
	Checking for a Requested Address
	Cache Puzzle #1
	Direct-Mapped Cache
	Direct-Mapped Cache Problem
	Associativity
	A step back: Block size
	The real world

