
CSE351, Spring 2018L14: Structs and Alignment

Structs and Alignment
CSE 351 Spring 2018

http://xkcd.com/1168/

http://xkcd.com/1168/

CSE351, Spring 2018L14: Structs and Alignment

Administrivia

 Homework 3 due Wednesday

 Lab 3 released, due next week

 Lab 2 and midterm will be graded this week
 [in that order]

2

CSE351, Spring 2018L14: Structs and Alignment

Roadmap

3

car *c = malloc(sizeof(car));
c->miles = 100;
c->gals = 17;
float mpg = get_mpg(c);
free(c);

Car c = new Car();
c.setMiles(100);
c.setGals(17);
float mpg =

c.getMPG();

get_mpg:
pushq %rbp
movq %rsp, %rbp
...
popq %rbp
ret

Java:C:

Assembly
language:

Machine
code:

0111010000011000
100011010000010000000010
1000100111000010
110000011111101000011111

Computer
system:

OS:

Memory & data
Integers & floats
x86 assembly
Procedures & stacks
Executables
Arrays & structs
Memory & caches
Processes
Virtual memory
Memory allocation
Java vs. C

CSE351, Spring 2018L14: Structs and Alignment

Data Structures in Assembly

 Arrays
 One-dimensional
 Multi-dimensional (nested)
 Multi-level

 Structs
 Alignment

 Unions

4

CSE351, Spring 2018L14: Structs and Alignment

Structs in C

typedef struct {
int lengthInSeconds;
int yearRecorded;

} Song;

Song song1;

song1.lengthInSeconds = 213;
song1.yearRecorded = 1994;

Song song2;

song2.lengthInSeconds = 248;
song2.yearRecorded = 1988;

5

 Way of defining compound data types
 A structured group of variables, possibly including other structs

CSE351, Spring 2018L14: Structs and Alignment

Struct Definitions

 Structure definition:
 Does NOT declare a variable
 New type written “struct name”

 Joint struct definition and typedef
 Don’t need to give struct a name in this case

struct name {
/* fields */

};

typedef struct {
/* fields */

} name;
name n1;

struct name name1, *pn, name_ar[3];

struct nm {
/* fields */

};
typedef struct nm name;
name n1;

pointer

array

Easy to forget
semicolon!

CSE351, Spring 2018L14: Structs and Alignment

Scope of Struct Definition

 Why is placement of struct definition important?
 What actually happens when you declare a variable?

• Creating space for it somewhere!

 Without definition, program doesn’t know how much space

 Almost always define structs in global scope near the
top of your C file
 Struct definitions follow normal rules of scope

7

struct data {
int ar[4];
long d;

};

Size = _____ bytes struct rec {
int a[4];
long i;
struct rec* next;

};Size = _____ bytes

CSE351, Spring 2018L14: Structs and Alignment

Accessing Structure Members

 Given a struct instance, access
member using the . operator:

struct rec r1;
r1.i = val;

 Given a pointer to a struct:
struct rec *r;
r = &r1; // or malloc space for r to point to

We have two options:
• Use * and . operators: (*r).i = val;

• Use -> operator for short: r->i = val;

 In assembly: register holds address of the first byte
 Access members with offsets

8

struct rec {
int a[4];
long i;
struct rec *next;

};

CSE351, Spring 2018L14: Structs and Alignment

Java side-note

 An instance of a class is like a pointer to a struct
containing the fields
 (Ignoring methods and subclassing for now)
 So Java’s x.f is like C’s x->f or (*x).f

 In Java, almost everything is a pointer (“reference”) to
an object
 Cannot declare variables or fields that are structs or arrays
 Always a pointer to a struct or array
 So every Java variable or field is ≤ 8 bytes (but can point to

lots of data)

9

class Record { ... }
Record x = new Record();

CSE351, Spring 2018L14: Structs and Alignment

Structure Representation

 Characteristics
 Contiguously-allocated region of memory
 Refer to members within structure by names
 Members may be of different types

10

a

r

i next

0 16 24 32

struct rec {
int a[4];
long i;
struct rec *next;

} *r;

CSE351, Spring 2018L14: Structs and Alignment

Structure Representation

 Structure represented as block of memory
 Big enough to hold all the fields

 Fields ordered according to declaration order
 Even if another ordering would be more compact

 Compiler determines overall size + positions of fields
 Machine-level program has no understanding of the

structures in the source code

11

struct rec {
int a[4];
long i;
struct rec *next;

} *r;
a

r

i next

0 16 24 32

CSE351, Spring 2018L14: Structs and Alignment

r in %rdi, index in %rsi
movq 16(%rdi), %rax
ret

long get_i(struct rec *r)
{
return r->i;

}

Accessing a Structure Member

 Compiler knows the
offset of each member
within a struct
 Compute as
*(r+offset)

12

r->i

a

r

i next

0 16 24 32

struct rec {
int a[4];
long i;
struct rec *next;

} *r;

CSE351, Spring 2018L14: Structs and Alignment

r in %rdi

__ ,%rax

ret

Exercise: Pointer to Structure Member

13

r in %rdi

__ ,%rax

ret

long* addr_of_i(struct rec *r)
{
return &(r->i);

}

struct rec** addr_of_next(struct rec *r)
{
return &(r->next);

}

struct rec {
int a[4];
long i;
struct rec *next;

} *r;
a

r

i next

0 16 24 32

CSE351, Spring 2018L14: Structs and Alignment

r in %rdi, index in %rsi
leaq (%rdi,%rsi,4), %rax
ret

int* find_addr_of_array_elem
(struct rec *r, long index)

{
return &r->a[index];

}

Generating Pointer to Array Element

 Generating Pointer to
Array Element
 Offset of each structure

member determined at
compile time
 Compute as:
r+4*index

14

r+4*index

&(r->a[index])

struct rec {
int a[4];
long i;
struct rec *next;

} *r;
a

r

i next

0 16 24 32

CSE351, Spring 2018L14: Structs and Alignment

Review: Memory Alignment in x86-64

 For good memory system performance, Intel
recommends data be aligned
 However the x86-64 hardware will work correctly regardless

of alignment of data

 Aligned means that any primitive object of 𝐾𝐾 bytes
must have an address that is a multiple of 𝐾𝐾

 Aligned addresses for data types:

15

𝐾𝐾 Type Addresses

1 char No restrictions

2 short Lowest bit must be zero: …02

4 int, float Lowest 2 bits zero: …002

8 long, double, * Lowest 3 bits zero: …0002

16 long double Lowest 4 bits zero: …00002

CSE351, Spring 2018L14: Structs and Alignment

Alignment Principles

 Aligned Data
 Primitive data type requires 𝐾𝐾 bytes
 Address must be multiple of 𝐾𝐾
 Required on some machines; advised on x86-64

 Motivation for Aligning Data
 Memory accessed by (aligned) chunks of 4 or 8 bytes

(system dependent)
• Inefficient to load or store value that spans quad word boundaries
• Virtual memory trickier when value spans 2 pages (more on this later)

16

CSE351, Spring 2018L14: Structs and Alignment

Structures & Alignment

 Unaligned Data

 Aligned Data
 Primitive data type requires 𝐾𝐾 bytes
 Address must be multiple of 𝐾𝐾

17

c i[0] i[1] v

p p+1 p+5 p+9 p+17

internal fragmentation

struct S1 {
char c;
int i[2];
double v;

} *p;

c i[0] i[1] v3 bytes 4 bytes

p+0 p+4 p+8 p+16 p+24

Multiple of 4 Multiple of 8
Multiple of 8 Multiple of 8

CSE351, Spring 2018L14: Structs and Alignment

Satisfying Alignment with Structures (1)

 Within structure:
 Must satisfy each element’s alignment requirement

 Overall structure placement
 Each structure has alignment requirement 𝐾𝐾max

• 𝐾𝐾max = Largest alignment of any element
• Counts array elements individually as elements

 Address of structure & structure length must be multiples of 𝑲𝑲𝐦𝐦𝐦𝐦𝐦𝐦

 Example:
 𝐾𝐾max = 8, due to double element

18

struct S1 {
char c;
int i[2];
double v;

} *p;

c i[0] i[1] v3 bytes 4 bytes

p+0 p+4 p+8 p+16 p+24

Multiple of 4 Multiple of 8
Multiple of 8 Multiple of 8internal fragmentation

CSE351, Spring 2018L14: Structs and Alignment

Satisfying Alignment with Structures (2)

 Can find offset of individual fields
using offsetof()
 Need to #include <stddef.h>
 Example: offsetof(struct S2,c) returns 16

 For largest alignment requirement 𝐾𝐾max,
overall structure size must be multiple of 𝐾𝐾max
 Compiler will add padding at end of

structure to meet overall structure
alignment requirement

19

v i[0] i[1] c 7 bytes

p+0 p+8 p+16 p+24

external fragmentation

struct S2 {
double v;
int i[2];
char c;

} *p;

Multiple of 8

CSE351, Spring 2018L14: Structs and Alignment

Arrays of Structures

 Overall structure length multiple of 𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚

 Satisfy alignment requirement
for every element in array

20

a[0] a[1] a[2] • • •

a+0 a+24 a+48 a+72

struct S2 {
double v;
int i[2];
char c;

} a[10];

v i[0] i[1] c 7 bytes

a+24 a+32 a+40 a+48

external fragmentation

CSE351, Spring 2018L14: Structs and Alignment

Alignment of Structs

 Compiler will do the following:
 Maintains declared ordering of fields in struct
 Each field must be aligned within the struct

(may insert padding)
• offsetof can be used to get actual field offset

 Overall struct must be aligned according to largest field
• Because of arrays to structs

 Total struct size must be multiple of its alignment
(may insert padding)
• sizeof should be used to get true size of structs

21

CSE351, Spring 2018L14: Structs and Alignment

Accessing Array Elements
 Compute start of array element as: 12*index
 sizeof(S3) = 12, including alignment padding

 Element j is at offset 8 within structure
 Assembler gives offset a+8

22

short get_j(int index)
{
return a[index].j;

}

%rdi = index
leaq (%rdi,%rdi,2),%rax # 3*index
movzwl a+8(,%rax,4),%eax

a[0] • • • a[index] • • •

a+0 a+12 a+12*index

i 2 bytes v j 2 bytes
a+12*index

a+12*index+8

struct S3 {
short i;
float v;
short j;

} a[10];

CSE351, Spring 2018L14: Structs and Alignment

How the Programmer Can Save Space

 Compiler must respect order elements are declared in
 Sometimes the programmer can save space by declaring

large data types first

23

struct S4 {
char c;
int i;
char d;

} *p;

struct S5 {
int i;
char c;
char d;

} *p;

c i3 bytes d 3 bytes ci d 2 bytes

12 bytes 8 bytes

CSE351, Spring 2018L14: Structs and Alignment

Peer Instruction Question
 Minimize the size of the struct by re-ordering the vars

 What are the old and new sizes of the struct?
sizeof(struct old) = _____ sizeof(struct new) = _____

A. 22 bytes
B. 24 bytes
C. 28 bytes
D. 32 bytes
E. We’re lost…

24

struct old {
int i;

short s[3];

char *c;

float f;
};

struct new {
int i;

______ ______;

______ ______;

______ ______;
};

CSE351, Spring 2018L14: Structs and Alignment

Unions

 Only allocates enough space for the largest element
in union

 Can only use one member at a time

25

union U {
char c;
int i[2];
double v;

} *up;

struct S {
char c;
int i[2];
double v;

} *sp;

c 3 bytes i[0] i[1] 4 bytes v

sp+0 sp+4 sp+8 sp+16 sp+24

c

i[0] i[1]

v

up+0 up+4 up+8

CSE351, Spring 2018L14: Structs and Alignment

Summary

 Arrays in C
 Aligned to satisfy every element’s alignment requirement

 Structures
 Allocate bytes in order declared
 Pad in middle and at end to satisfy alignment

 Unions
 Provide different views of the same memory location

26

	Structs and Alignment�CSE 351 Spring 2018
	Administrivia
	Roadmap
	Data Structures in Assembly
	Structs in C
	Struct Definitions
	Scope of Struct Definition
	Accessing Structure Members
	Java side-note
	Structure Representation
	Structure Representation
	Accessing a Structure Member
	Exercise: Pointer to Structure Member
	Generating Pointer to Array Element
	Review: Memory Alignment in x86-64
	Alignment Principles
	Structures & Alignment
	Satisfying Alignment with Structures (1)
	Satisfying Alignment with Structures (2)
	Arrays of Structures
	Alignment of Structs
	Accessing Array Elements
	How the Programmer Can Save Space
	Peer Instruction Question
	Unions
	Summary

