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Administrivia

 Homework 3 due Wednesday

 Lab 3 released, due next week

 Lab 2 and midterm will be graded this week 
 [in that order]
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Roadmap
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car *c = malloc(sizeof(car));
c->miles = 100;
c->gals = 17;
float mpg = get_mpg(c);
free(c);

Car c = new Car();
c.setMiles(100);
c.setGals(17);
float mpg =

c.getMPG();

get_mpg:
pushq %rbp
movq %rsp, %rbp
...
popq %rbp
ret

Java:C:

Assembly 
language:

Machine 
code:

0111010000011000
100011010000010000000010
1000100111000010
110000011111101000011111

Computer 
system:

OS:

Memory & data
Integers & floats
x86 assembly
Procedures & stacks
Executables
Arrays & structs
Memory & caches
Processes
Virtual memory
Memory allocation
Java vs. C
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Data Structures in Assembly

 Arrays
 One-dimensional
 Multi-dimensional (nested)
 Multi-level

 Structs
 Alignment

 Unions
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Structs in C

typedef struct {
int lengthInSeconds;
int yearRecorded;

} Song;

Song song1;

song1.lengthInSeconds =  213;
song1.yearRecorded    = 1994;

Song song2;

song2.lengthInSeconds =  248;
song2.yearRecorded    = 1988;
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 Way of defining compound data types
 A structured group of variables, possibly including other structs
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Struct Definitions

 Structure definition:
 Does NOT declare a variable
 New type written “struct name”

 Joint struct definition and typedef
 Don’t need to give struct a name in this case

struct name {
/* fields */ 

};

typedef struct {
/* fields */

} name;
name n1;

struct name name1, *pn, name_ar[3];

struct nm {
/* fields */

};
typedef struct nm name;
name n1;

pointer

array

Easy to forget 
semicolon!
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Scope of Struct Definition

 Why is placement of struct definition important?
 What actually happens when you declare a variable?

• Creating space for it somewhere!

 Without definition, program doesn’t know how much space

 Almost always define structs in global scope near the 
top of your C file
 Struct definitions follow normal rules of scope
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struct data {
int ar[4];
long d;

};

Size = _____ bytes struct rec {
int a[4];
long i;
struct rec* next;

};Size = _____ bytes
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Accessing Structure Members

 Given a struct instance, access 
member using the . operator:

struct rec r1;
r1.i = val;

 Given a pointer to a struct:   
struct rec *r;
r = &r1;  // or malloc space for r to point to

We have two options:
• Use  * and  . operators: (*r).i = val;

• Use  -> operator for short:        r->i = val;

 In assembly: register holds address of the first byte
 Access members with offsets
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struct rec {
int a[4];
long i;
struct rec *next;

};
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Java side-note

 An instance of a class is like a pointer to a struct 
containing the fields
 (Ignoring methods and subclassing for now)
 So Java’s  x.f is like C’s  x->f or  (*x).f

 In Java, almost everything is a pointer (“reference”) to 
an object
 Cannot declare variables or fields that are structs or arrays
 Always a pointer to a struct or array
 So every Java variable or field is ≤ 8 bytes (but can point to 

lots of data)
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class Record { ... }
Record x = new Record();
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Structure Representation

 Characteristics
 Contiguously-allocated region of memory
 Refer to members within structure by names
 Members may be of different types
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a

r

i next

0 16 24 32

struct rec {
int a[4];
long i;
struct rec *next;

} *r;
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Structure Representation

 Structure represented as block of memory
 Big enough to hold all the fields

 Fields ordered according to declaration order
 Even if another ordering would be more compact

 Compiler determines overall size + positions of fields
 Machine-level program has no understanding of the 

structures in the source code 
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struct rec {
int a[4];
long i;
struct rec *next;

} *r;
a

r

i next

0 16 24 32
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# r in %rdi, index in %rsi
movq 16(%rdi), %rax
ret

long get_i(struct rec *r)
{
return r->i;

}

Accessing a Structure Member

 Compiler knows the 
offset of each member 
within a struct
 Compute as 
*(r+offset)
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r->i

a

r

i next

0 16 24 32

struct rec {
int a[4];
long i;
struct rec *next;

} *r;
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# r in %rdi

__ ,%rax

ret

Exercise:  Pointer to Structure Member
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# r in %rdi

__ ,%rax

ret

long* addr_of_i(struct rec *r)
{
return &(r->i);

}

struct rec** addr_of_next(struct rec *r)
{
return &(r->next);

}

struct rec {
int a[4];
long i;
struct rec *next;

} *r;
a

r

i next

0 16 24 32
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# r in %rdi, index in %rsi
leaq (%rdi,%rsi,4), %rax
ret

int* find_addr_of_array_elem
(struct rec *r, long index)

{
return &r->a[index];

}

Generating Pointer to Array Element

 Generating Pointer to 
Array Element
 Offset of each structure 

member determined at 
compile time
 Compute as:  
r+4*index
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r+4*index

&(r->a[index])

struct rec {
int a[4];
long i;
struct rec *next;

} *r;
a

r

i next

0 16 24 32
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Review:  Memory Alignment in x86-64

 For good memory system performance, Intel 
recommends data be aligned 
 However the x86-64 hardware will work correctly regardless 

of alignment of data

 Aligned means that any primitive object of 𝐾𝐾 bytes 
must have an address that is a multiple of 𝐾𝐾

 Aligned addresses for data types:
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𝐾𝐾 Type Addresses

1 char No restrictions

2 short Lowest bit must be zero: …02

4 int, float Lowest 2 bits zero: …002

8 long, double, * Lowest 3 bits zero: …0002

16 long double Lowest 4 bits zero: …00002
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Alignment Principles

 Aligned Data
 Primitive data type requires 𝐾𝐾 bytes
 Address must be multiple of 𝐾𝐾
 Required on some machines; advised on x86-64

 Motivation for Aligning Data
 Memory accessed by (aligned) chunks of 4 or 8 bytes 

(system dependent)
• Inefficient to load or store value that spans quad word boundaries
• Virtual memory trickier when value spans 2 pages (more on this later)
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Structures & Alignment

 Unaligned Data

 Aligned Data
 Primitive data type requires 𝐾𝐾 bytes
 Address must be multiple of 𝐾𝐾
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c i[0] i[1] v

p p+1 p+5 p+9 p+17

internal fragmentation

struct S1 {
char c;
int i[2];
double v;

} *p;

c i[0] i[1] v3 bytes 4 bytes

p+0 p+4 p+8 p+16 p+24

Multiple of 4 Multiple of 8
Multiple of 8 Multiple of 8



CSE351, Spring 2018L14:  Structs and Alignment

Satisfying Alignment with Structures (1)

 Within structure:
 Must satisfy each element’s alignment requirement

 Overall structure placement
 Each structure has alignment requirement 𝐾𝐾max

• 𝐾𝐾max = Largest alignment of any element
• Counts array elements individually as elements

 Address of structure & structure length must be multiples of 𝑲𝑲𝐦𝐦𝐦𝐦𝐦𝐦

 Example:
 𝐾𝐾max = 8, due to double element
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struct S1 {
char c;
int i[2];
double v;

} *p;

c i[0] i[1] v3 bytes 4 bytes

p+0 p+4 p+8 p+16 p+24

Multiple of 4 Multiple of 8
Multiple of 8 Multiple of 8internal fragmentation
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Satisfying Alignment with Structures (2)

 Can find offset of individual fields 
using offsetof()
 Need to #include <stddef.h>
 Example:  offsetof(struct S2,c) returns 16

 For largest alignment requirement 𝐾𝐾max,
overall structure size must be multiple of 𝐾𝐾max
 Compiler will add padding at end of 

structure to meet overall structure 
alignment requirement
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v i[0] i[1] c 7 bytes

p+0 p+8 p+16 p+24

external fragmentation

struct S2 {
double v;
int i[2];
char c;

} *p;

Multiple of 8
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Arrays of Structures

 Overall structure length multiple of 𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚

 Satisfy alignment requirement 
for every element in array
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a[0] a[1] a[2] • • •

a+0 a+24 a+48 a+72

struct S2 {
double v;
int i[2];
char c;

} a[10];

v i[0] i[1] c 7 bytes

a+24 a+32 a+40 a+48

external fragmentation
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Alignment of Structs

 Compiler will do the following:
 Maintains declared ordering of fields in struct
 Each field must be aligned within the struct

(may insert padding)
• offsetof can be used to get actual field offset

 Overall struct must be aligned according to largest field
• Because of arrays to structs

 Total struct size must be multiple of its alignment 
(may insert padding)
• sizeof should be used to get true size of structs
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Accessing Array Elements
 Compute start of array element as: 12*index
 sizeof(S3) = 12, including alignment padding

 Element j is at offset 8 within structure
 Assembler gives offset  a+8

22

short get_j(int index)
{
return a[index].j;

}

# %rdi = index
leaq (%rdi,%rdi,2),%rax # 3*index
movzwl a+8(,%rax,4),%eax

a[0] • • • a[index] • • •

a+0 a+12 a+12*index

i 2 bytes v j 2 bytes
a+12*index

a+12*index+8

struct S3 {
short i;
float v;
short j;

} a[10];
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How the Programmer Can Save Space

 Compiler must respect order elements are declared in
 Sometimes the programmer can save space by declaring 

large data types first
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struct S4 {
char c;
int i;
char d;

} *p;

struct S5 {
int i;
char c;
char d;

} *p;

c i3 bytes d 3 bytes ci d 2 bytes

12 bytes 8 bytes
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Peer Instruction Question
 Minimize the size of the struct by re-ordering the vars

 What are the old and new sizes of the struct?
sizeof(struct old) = _____ sizeof(struct new) = _____

A. 22 bytes
B. 24 bytes
C. 28 bytes
D. 32 bytes
E. We’re lost…
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struct old {
int i;

short s[3];

char *c;

float f;
};

struct new {
int i;

______ ______;

______ ______;

______ ______;
};
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Unions

 Only allocates enough space for the largest element 
in union

 Can only use one member at a time
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union U {
char c;
int i[2];
double v;

} *up;

struct S {
char c;
int i[2];
double v;

} *sp;

c 3 bytes i[0] i[1] 4 bytes v

sp+0 sp+4 sp+8 sp+16 sp+24

c

i[0] i[1]

v

up+0 up+4 up+8
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Summary

 Arrays in C
 Aligned to satisfy every element’s alignment requirement

 Structures
 Allocate bytes in order declared
 Pad in middle and at end to satisfy alignment

 Unions
 Provide different views of the same memory location

26
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