
CSE351, Spring 2018L12: Procedures & Executables

Procedures & Executables
CSE 351 Spring 2018

https://xkcd.com/1537/

https://xkcd.com/1537/

CSE351, Spring 2018L12: Procedures & Executables

Procedures

 Stack Structure
 Calling Conventions
 Passing control
 Passing data
 Managing local data

 Register Saving Conventions
 Illustration of Recursion

2

CSE351, Spring 2018L12: Procedures & Executables

Register Saving Conventions
 When procedure yoo calls who:
 yoo is the caller
 who is the callee

 Can registers be used for temporary storage?

 No! Contents of register %rdx overwritten by who!
 This could be trouble – something should be done. Either:

• Caller should save %rdx before the call (and restore it after the call)
• Callee should save %rdx before using it (and restore it before returning)

3

yoo:
• • •
movq $15213, %rdx
call who
addq %rdx, %rax
• • •
ret

who:
• • •
subq $18213, %rdx
• • •
ret

?

CSE351, Spring 2018L12: Procedures & Executables

Register Saving Conventions

 “Caller-saved” registers
 It is the caller’s responsibility to save any important data in

these registers before calling another procedure (i.e. the
callee can freely change data in these registers)
 Caller saves values in its stack frame before calling Callee,

then restores values after the call

 “Callee-saved” registers
 It is the callee’s responsibility to save any data in these

registers before using the registers (i.e. the caller assumes
the data will be the same across the callee procedure call)
 Callee saves values in its stack frame before using, then

restores them before returning to caller

4

CSE351, Spring 2018L12: Procedures & Executables

Silly Register Convention Analogy

1) Parents (caller) leave for the weekend and give the keys to the
house to their child (callee)
 Being suspicious, they put away/hid the valuables (caller-saved) before

leaving
 Warn child to leave the bedrooms untouched: “These rooms better look

the same when we return!”

2) Child decides to throw a wild party (computation), spanning
the entire house
 To avoid being disowned, child moves all of the stuff from the bedrooms

to the backyard shed (callee-saved) before the guests trash the house
 Child cleans up house after the party and moves stuff back to bedrooms

3) Parents return home and are satisfied with the state of the
house
 Move valuables back and continue with their lives

5

CSE351, Spring 2018L12: Procedures & Executables

x86-64 Linux Register Usage, part 1
 %rax
 Return value
 Also caller-saved & restored
 Can be modified by procedure

 %rdi, ..., %r9
 Arguments
 Also caller-saved & restored
 Can be modified by procedure

 %r10, %r11
 Caller-saved & restored
 Can be modified by procedure

6

%rax

%rdx

%rcx

Return value

%r8

%r9

%r10

%r11

%rdi

%rsi

Arguments

Caller-saved
temporaries

CSE351, Spring 2018L12: Procedures & Executables

x86-64 Linux Register Usage, part 2
 %rbx, %r12, %r13, %r14
 Callee-saved
 Callee must save & restore

 %rbp
 Callee-saved
 Callee must save & restore
 May be used as frame pointer
 Can mix & match

 %rsp
 Special form of callee save
 Restored to original value upon

exit from procedure

7

%rbx

%rsp

Callee-saved
Temporaries

Special
%rbp

%r12

%r13

%r14

CSE351, Spring 2018L12: Procedures & Executables

x86-64 64-bit Registers: Usage Conventions

8

%r8

%r9

%r10

%r11

%r12

%r13

%r14

%r15 Callee saved

Callee saved

Callee saved

Callee saved

Caller saved

Caller Saved

%rax

%rbx

%rcx

%rdx

%rsi

%rdi

%rsp

%rbp Callee saved

Callee saved

Stack pointer

Return value - Caller saved

Argument #4 - Caller saved

Argument #1 - Caller saved

Argument #3 - Caller saved

Argument #2 - Caller saved

Argument #6 - Caller saved

Argument #5 - Caller saved

CSE351, Spring 2018L12: Procedures & Executables

Callee-Saved Example (step 1)

9

call_incr2:
pushq %rbx
subq $16, %rsp
movq %rdi, %rbx
movq $351, 8(%rsp)
movl $100, %esi
leaq 8(%rsp), %rdi
call increment
addq %rbx, %rax
addq $16, %rsp
popq %rbx
ret

long call_incr2(long x) {
long v1 = 351;
long v2 = increment(&v1, 100);
return x+v2;

}

Initial Stack Structure

%rsp

. . .

ret addr

Resulting Stack Structure

351

Unused %rsp

. . .

ret addr

%rsp+8

Saved %rbx

CSE351, Spring 2018L12: Procedures & Executables

Callee-Saved Example (step 2)

10

call_incr2:
pushq %rbx
subq $16, %rsp
movq %rdi, %rbx
movq $351, 8(%rsp)
movl $100, %esi
leaq 8(%rsp), %rdi
call increment
addq %rbx, %rax
addq $16, %rsp
popq %rbx
ret

Pre-return Stack Structure

%rsp

. . .

Rtn address

Stack Structure

351

Unused %rsp

. . .

Rtn address

%rsp+8

Saved %rbx

long call_incr2(long x) {
long v1 = 351;
long v2 = increment(&v1, 100);
return x+v2;

}

CSE351, Spring 2018L12: Procedures & Executables

Why Caller and Callee Saved?

 We want one calling convention to simply separate
implementation details between caller and callee

 In general, neither caller-save nor callee-save is “best”:
 If caller isn’t using a register, caller-save is better
 If callee doesn’t need a register, callee-save is better
 If “do need to save”, callee-save generally makes smaller

programs
• Functions are called from multiple places

 So… “some of each” and compiler tries to “pick registers”
that minimize amount of saving/restoring

11

CSE351, Spring 2018L12: Procedures & Executables

Register Conventions Summary

 Caller-saved register values need to be pushed onto
the stack before making a procedure call only if the
Caller needs that value later
 Callee may change those register values

 Callee-saved register values need to be pushed onto
the stack only if the Callee intends to use those
registers
 Caller expects unchanged values in those registers

 Don’t forget to restore/pop the values later!

12

CSE351, Spring 2018L12: Procedures & Executables

Procedures

 Stack Structure
 Calling Conventions
 Passing control
 Passing data
 Managing local data

 Register Saving Conventions
 Illustration of Recursion

13

CSE351, Spring 2018L12: Procedures & Executables

/* Recursive popcount */
long pcount_r(unsigned long x) {
if (x == 0)
return 0;

else
return (x&1)+pcount_r(x >> 1);

}

Recursive Function

14

pcount_r:
movl $0, %eax
testq %rdi, %rdi
je .L6
pushq %rbx
movq %rdi, %rbx
shrq %rdi
call pcount_r
andl $1, %ebx
addq %rbx, %rax
popq %rbx

.L6:
rep ret

Compiler Explorer:
https://godbolt.org/g/W8DxeR
• Compiled with -O1 for brevity

instead of -Og
• Try -O2 instead!

https://godbolt.org/g/W8DxeR

CSE351, Spring 2018L12: Procedures & Executables

Recursive Function: Base Case

15

/* Recursive popcount */
long pcount_r(unsigned long x) {
if (x == 0)
return 0;

else
return (x&1)+pcount_r(x >> 1);

} pcount_r:
movl $0, %eax
testq %rdi, %rdi
je .L6
pushq %rbx
movq %rdi, %rbx
shrq %rdi
call pcount_r
andl $1, %ebx
addq %rbx, %rax
popq %rbx

.L6:
rep ret

Register Use(s) Type

%rdi x Argument

%rax Return value Return value

Trick because some AMD
hardware doesn’t like
jumping to ret

CSE351, Spring 2018L12: Procedures & Executables

Recursive Function: Callee Register Save

16

/* Recursive popcount */
long pcount_r(unsigned long x) {
if (x == 0)
return 0;

else
return (x&1)+pcount_r(x >> 1);

} pcount_r:
movl $0, %eax
testq %rdi, %rdi
je .L6
pushq %rbx
movq %rdi, %rbx
shrq %rdi
call pcount_r
andl $1, %ebx
addq %rbx, %rax
popq %rbx

.L6:
rep ret

Register Use(s) Type

%rdi x Argument

. . .

rtn <main+?>

saved %rbx%rsp→

Need original value
of x after recursive
call to pcount_r.

“Save” by putting in
%rbx (callee
saved), but need to
save old value of
%rbx before you
change it.

The Stack

CSE351, Spring 2018L12: Procedures & Executables

Recursive Function: Call Setup

17

pcount_r:
movl $0, %eax
testq %rdi, %rdi
je .L6
pushq %rbx
movq %rdi, %rbx
shrq %rdi
call pcount_r
andl $1, %ebx
addq %rbx, %rax
popq %rbx

.L6:
rep ret

/* Recursive popcount */
long pcount_r(unsigned long x) {
if (x == 0)
return 0;

else
return (x&1)+pcount_r(x >> 1);

}

Register Use(s) Type

%rdi x (new) Argument

%rbx x (old) Callee saved

. . .

rtn <main+?>

saved %rbx%rsp→

The Stack

CSE351, Spring 2018L12: Procedures & Executables

Recursive Function: Call

18

Register Use(s) Type

%rax Recursive call
return value Return value

%rbx x (old) Callee saved

/* Recursive popcount */
long pcount_r(unsigned long x) {
if (x == 0)
return 0;

else
return (x&1)+pcount_r(x >> 1);

} pcount_r:
movl $0, %eax
testq %rdi, %rdi
je .L6
pushq %rbx
movq %rdi, %rbx
shrq %rdi
call pcount_r
andl $1, %ebx
addq %rbx, %rax
popq %rbx

.L6:
rep ret

. . .

rtn <main+?>

saved %rbx

rtn <pcount_r+22>

. . .
%rsp→

The Stack

CSE351, Spring 2018L12: Procedures & Executables

Recursive Function: Result

19

/* Recursive popcount */
long pcount_r(unsigned long x) {
if (x == 0)
return 0;

else
return (x&1)+pcount_r(x >> 1);

} pcount_r:
movl $0, %eax
testq %rdi, %rdi
je .L6
pushq %rbx
movq %rdi, %rbx
shrq %rdi
call pcount_r
andl $1, %ebx
addq %rbx, %rax
popq %rbx

.L6:
rep ret

Register Use(s) Type

%rax Return value Return value

%rbx x&1 Callee saved

. . .

rtn <main+?>

saved %rbx%rsp→

The Stack

CSE351, Spring 2018L12: Procedures & Executables

Recursive Function: Completion

20

/* Recursive popcount */
long pcount_r(unsigned long x) {
if (x == 0)
return 0;

else
return (x&1)+pcount_r(x >> 1);

} pcount_r:
movl $0, %eax
testq %rdi, %rdi
je .L6
pushq %rbx
movq %rdi, %rbx
shrq %rdi
call pcount_r
andl $1, %ebx
addq %rbx, %rax
popq %rbx

.L6:
rep ret

Register Use(s) Type

%rax Return value Return value

%rbx Previous
%rbx value

Callee
restored

. . .

rtn <main+?>

saved %rbx

%rsp→

The Stack

CSE351, Spring 2018L12: Procedures & Executables

Observations About Recursion

 Works without any special consideration
 Stack frames mean that each function call has private

storage
• Saved registers & local variables
• Saved return pointer

 Register saving conventions prevent one function call from
corrupting another’s data
• Unless the code explicitly does so (e.g. buffer overflow)

 Stack discipline follows call / return pattern
• If P calls Q, then Q returns before P
• Last-In, First-Out (LIFO)

 Also works for mutual recursion (P calls Q; Q calls P)

21

CSE351, Spring 2018L12: Procedures & Executables

x86-64 Stack Frames

 Many x86-64 procedures have a minimal stack frame
 Only return address is pushed onto the stack when

procedure is called

 A procedure needs to grow its stack frame when it:
 Has too many local variables to hold in caller-saved registers
 Has local variables that are arrays or structs
 Uses & to compute the address of a local variable
 Calls another function that takes more than six arguments
 Is using caller-saved registers and then calls a procedure
 Modifies/uses callee-saved registers

22

CSE351, Spring 2018L12: Procedures & Executables

x86-64 Procedure Summary

 Important Points
 Procedures are a combination of

instructions and conventions
• Conventions prevent functions from

disrupting each other
 Stack is the right data structure for

procedure call/return
• If P calls Q, then Q returns before P

 Recursion handled by normal calling
conventions

 Heavy use of registers
 Faster than using memory
 Use limited by data size and conventions

 Minimize use of the Stack
23

Return Addr

Saved
Registers

+
Local

Variables

Argument
Build

Old %rbp

Arguments
7+

Caller
Frame

%rbp
(Optional)

%rsp

CSE351, Spring 2018L12: Procedures & Executables

Roadmap

24

car *c = malloc(sizeof(car));
c->miles = 100;
c->gals = 17;
float mpg = get_mpg(c);
free(c);

Car c = new Car();
c.setMiles(100);
c.setGals(17);
float mpg =

c.getMPG();

get_mpg:
pushq %rbp
movq %rsp, %rbp
...
popq %rbp
ret

Java:C:

Assembly
language:

Machine
code:

0111010000011000
100011010000010000000010
1000100111000010
110000011111101000011111

Computer
system:

OS:

Memory & data
Integers & floats
x86 assembly
Procedures & stacks
Executables
Arrays & structs
Memory & caches
Processes
Virtual memory
Memory allocation
Java vs. C

CSE351, Spring 2018L12: Procedures & Executables

Building an Executable from a C File
 Code in files p1.c p2.c
 Compile with command: gcc -Og p1.c p2.c -o p
 Put resulting machine code in file p

 Run with command: ./p

25

text

text

binary

binary

Compiler (gcc –Og -S)

Assembler (gcc -c or as)

Linker (gcc or ld)

C program (p1.c p2.c)

Asm program (p1.s p2.s)

Object program (p1.o p2.o)

Executable program (p)

Static libraries (.a)

Loader (the OS)

CSE351, Spring 2018L12: Procedures & Executables

Compiler

 Input: Higher-level language code (e.g. C, Java)
 foo.c

 Output: Assembly language code (e.g. x86, ARM, MIPS)
 foo.s

 First there’s a preprocessor step to handle #directives
 Macro substitution, plus other specialty directives
 If curious/interested: http://tigcc.ticalc.org/doc/cpp.html

 Super complex, whole courses devoted to these!
 Compiler optimizations
 “Level” of optimization specified by capital ‘O’ flag (e.g. -Og, -O3)
 Options: https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

26

http://tigcc.ticalc.org/doc/cpp.html
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

CSE351, Spring 2018L12: Procedures & Executables

Compiling Into Assembly
 C Code (sum.c)

 x86-64 assembly (gcc –Og –S sum.c)
 Generates file sum.s (see https://godbolt.org/g/o34FHp)

Warning: You may get different results with other versions of
gcc and different compiler settings

27

void sumstore(long x, long y, long *dest) {
long t = x + y;
*dest = t;

}

sumstore(long, long, long*):
addq %rdi, %rsi
movq %rsi, (%rdx)
ret

https://godbolt.org/g/o34FHp

CSE351, Spring 2018L12: Procedures & Executables

Assembler

 Input: Assembly language code (e.g. x86, ARM, MIPS)
 foo.s

 Output: Object files (e.g. ELF, COFF)
 foo.o

 Contains object code and information tables

 Reads and uses assembly directives
 e.g. .text, .data, .quad
 x86: https://docs.oracle.com/cd/E26502_01/html/E28388/eoiyg.html

 Produces “machine language”
 Does its best, but object file is not a completed binary

 Example: gcc -c foo.s

28

https://docs.oracle.com/cd/E26502_01/html/E28388/eoiyg.html

CSE351, Spring 2018L12: Procedures & Executables

Producing Machine Language
 Simple cases: arithmetic and logical operations, shifts, etc.
 All necessary information is contained in the instruction itself

 What about the following?
 Conditional jump
 Accessing static data (e.g. global var or jump table)
 call

 Addresses and labels are problematic because final executable
hasn’t been constructed yet!
 So how do we deal with these in the meantime?

29

CSE351, Spring 2018L12: Procedures & Executables

Object File Information Tables
 Symbol Table holds list of “items” that may be used by other

files
 Non-local labels – function names for call
 Static Data – variables & literals that might be accessed across files

 Relocation Table holds list of “items” that this file needs the
address of later (currently undetermined)
 Any label or piece of static data referenced in an instruction in this file

• Both internal and external

 Each file has its own symbol and relocation tables

30

CSE351, Spring 2018L12: Procedures & Executables

Object File Format

1) object file header: size and position of the other pieces of the
object file

2) text segment: the machine code
3) data segment: data in the source file (binary)
4) relocation table: identifies lines of code that need to be

“handled”
5) symbol table: list of this file’s labels and data that can be

referenced
6) debugging information

 More info: ELF format
 http://www.skyfree.org/linux/references/ELF_Format.pdf

31

http://www.skyfree.org/linux/references/ELF_Format.pdf

CSE351, Spring 2018L12: Procedures & Executables

Linker

 Input: Object files (e.g. ELF, COFF)
 foo.o

 Output: executable binary program
 a.out

 Combines several object files into a single executable (linking)
 Enables separate compilation/assembling of files
 Changes to one file do not require recompiling of whole program

32

CSE351, Spring 2018L12: Procedures & Executables

Linking
1) Take text segment from each .o file and put them together
2) Take data segment from each .o file, put them together, and

concatenate this onto end of text segments
3) Resolve References
 Go through Relocation Table; handle each entry

33

object file 1
info 1
data 1
text 1

object file 2
info 2
data 2
text 2

Linker

a.out

Relocated data 1

Relocated data 2

Relocated text 1

Relocated text 2

CSE351, Spring 2018L12: Procedures & Executables

Disassembling Object Code

 Disassembled:

 Disassembler (objdump -d sum)
 Useful tool for examining object code (man 1 objdump)
 Analyzes bit pattern of series of instructions
 Produces approximate rendition of assembly code
 Can run on either a.out (complete executable) or .o file

34

0000000000400536 <sumstore>:
400536: 48 01 fe add %rdi,%rsi
400539: 48 89 32 mov %rsi,(%rdx)
40053c: c3 retq

CSE351, Spring 2018L12: Procedures & Executables

What Can be Disassembled?

 Anything that can be interpreted as executable code
 Disassembler examines bytes and attempts to reconstruct

assembly source
35

% objdump -d WINWORD.EXE

WINWORD.EXE: file format pei-i386

No symbols in "WINWORD.EXE".
Disassembly of section .text:

30001000 <.text>:
30001000: 55 push %ebp
30001001: 8b ec mov %esp,%ebp
30001003: 6a ff push $0xffffffff
30001005: 68 90 10 00 30 push $0x30001090
3000100a: 68 91 dc 4c 30 push $0x304cdc91

Reverse engineering forbidden by
Microsoft End User License Agreement

CSE351, Spring 2018L12: Procedures & Executables

Loader

 Input: executable binary program, command-line arguments
 ./a.out arg1 arg2

 Output: <program is run>

 Loader duties primarily handled by OS/kernel
 More about this when we learn about processes

 Memory sections (Instructions, Static Data, Stack) are set up
 Registers are initialized

36

	Procedures & Executables�CSE 351 Spring 2018
	Procedures
	Register Saving Conventions
	Register Saving Conventions
	Silly Register Convention Analogy
	x86-64 Linux Register Usage, part 1
	x86-64 Linux Register Usage, part 2
	x86-64 64-bit Registers: Usage Conventions
	Callee-Saved Example (step 1)
	Callee-Saved Example (step 2)
	Why Caller and Callee Saved?
	Register Conventions Summary
	Procedures
	Recursive Function
	Recursive Function: Base Case
	Recursive Function: Callee Register Save
	Recursive Function: Call Setup
	Recursive Function: Call
	Recursive Function: Result
	Recursive Function: Completion
	Observations About Recursion
	x86-64 Stack Frames
	x86-64 Procedure Summary
	Roadmap
	Building an Executable from a C File
	Compiler
	Compiling Into Assembly
	Assembler
	Producing Machine Language
	Object File Information Tables
	Object File Format
	Linker
	Linking
	Disassembling Object Code
	What Can be Disassembled?
	Loader

