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Administrivia

 Lab 1 due Friday 
 Submit bits.c, pointer.c, lab1reflect.txt

 Homework 2 due following Tuesday
 On Integers, Floating Point, and x86-64
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Floating point topics

 Fractional binary numbers
 IEEE floating-point standard
 Floating-point operations and rounding
 Floating-point in C

 There are many more details that 
we won’t cover
 It’s a 58-page standard…
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Floating Point Encoding Summary

E M Meaning
0x00 0 ± 0
0x00 non-zero ± denorm num

0x01 – 0xFE anything ± norm num
0xFF 0 ± ∞
0xFF non-zero NaN
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Distribution of Values

 What ranges are NOT representable?
 Between largest norm and infinity
 Between zero and smallest denorm
 Between norm numbers?

 Given a FP number, what’s the bit pattern of the next 
largest representable number?
 What is this “step” when Exp = 0?
 What is this “step” when Exp = 100?

 Distribution of values is denser toward zero
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Floating Point Operations:  Basic Idea

 x +f y = Round(x + y)

 x *f y = Round(x * y)

 Basic idea for floating point operations:
 First, compute the exact result
 Then round the result to make it fit into desired precision:

• Possibly over/underflow if exponent outside of range
• Possibly drop least-significant bits of mantissa to fit into M bit vector

6

S E M

Value = (-1)S×Mantissa×2Exponent
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Floating Point Addition

 (-1)S1×Man1×2Exp1 +  (-1)S2×Man2×2Exp2

 Assume Exp1 > Exp2

 Exact Result:  (-1)S×Man×2Exp

 Sign S, mantissa Man: 
• Result of signed align & add

 Exponent E:  E1

 Adjustments:
 If Man ≥ 2, shift Man right, increment Exp
 If Man < 1, shift Man left 𝑘𝑘 positions, decrement Exp by 𝑘𝑘
 Over/underflow if Exp out of range
 Round Man to fit mantissa precision
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(-1)S1 Man1
(-1)S2 Man2 

Exp1–Exp2

+
(-1)S Man

Line up the binary points!

1.010*22

+ 1.000*2-1

???

1.0100*22

+ 0.0010*22

1.0110*22
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Floating Point Multiplication

 (-1)S1×Man1×2Exp1 × (-1)S2×Man2×2Exp2

 Exact Result:
 Sign S: S1 ^ S2
 Mantissa Man: Man1 × Man2
 Exponent Exp: Exp1 + Exp2

 Adjustments:
 If Man ≥ 2, shift Man right, increment Exp
 Over/underflow if Exp out of range
 Round Man to fit mantissa precision
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Mathematical Properties of FP Operations

 Exponent overflow yields +∞ or -∞
 Floats with value +∞, -∞, and NaN can be used in 

operations
 Result usually still +∞, -∞, or NaN; but not always intuitive

 Floating point operations do not work like real math, 
due to rounding – any programmer using floats in any 
language must understand these issues!

9
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Mathematical Properties of FP Operations

Rounding issue 1: No exact representation of some 
“fractions”

(1.0 / 3) * 3 != 1.0

10
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Mathematical Properties of FP Operations

Rounding issue 2: Limited mantissa means lost precision

(3.14 + 1e100) – 1e100 == 0.0

Addition/subtraction no longer associative

3.14 + (1e100 – 1e100) == 3.14
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Mathematical Properties of FP Operations

Lack of associativity can be worse with loops:

float x = huge_number;
for(i=0; i < large_number; i++)

x += small_number; 

vs. 
float x = 0;
for(i=0; i < large_number; i++)

x += small_number;
x += huge_number;

12
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Mathematical Properties of FP Operations

Rounding issue 3: No distributivity either

printf("%.20f %.20f\n",
100*(0.1+0.2), 
100*0.1 + 100*0.2);

30.00000000000000355271 
30.00000000000000000000
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Floating-point guidelines

 Assume possible small rounding at every operation
 Can compound across many operations

 Also beware overflow (infinity) and underflow (zero)

 Never compare floats for equality (cf. rounding)
 Compiler won’t complain, but a very likely bug (!)
 Ask if |e1-e2| is “small” for some “small” you care about

 This and preceding slides are the “key takeaways”
 Justified by your understanding of the bit-representation and the trade-

offs it is dealing with
 Floats work fine for simple stuff, else hard to do mathematically correct 

things (cf. numerical analysis)
14
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Floating point topics

 Fractional binary numbers
 IEEE floating-point standard
 Floating-point operations and rounding
 Floating-point in C

 There are many more details that 
we won’t cover
 It’s a 58-page standard…
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Floating Point in C

 C offers two (well, 3) levels of precision
float 1.0f   single precision (32-bit)
double 1.0    double precision (64-bit)
long double  1.0L   (“double double” or quadruple)

precision (64-128 bits)

 #include <math.h> to get INFINITY and NAN
constants

 Equality (==) comparisons are allowed but shouldn’t 
be used
 Interesting tidbit: 0.0 == -0.0 despite different bits

16
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Floating Point Conversions in C

 Casting between int, float, and double changes
the bit representation
 int → float

• May be rounded (not enough bits in mantissa: 23)
• Overflow impossible

 int or float → double
• Exact conversion (all 32-bit ints representable)

 long → double
• Depends on word size (32-bit is exact, 64-bit may be rounded)

 double or float → int
• Truncates fractional part (rounded toward zero)
• “Not defined” when out of range or NaN: generally sets to Tmin

(even if the value is a very big positive)
17
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Floating Point and the Programmer

18

#include <stdio.h>

int main(int argc, char* argv[]) {
float f1 = 1.0;
float f2 = 0.0;
int i;
for (i = 0; i < 10; i++)
f2 += 1.0/10.0;

printf("0x%08x 0x%08x\n", *(int*)&f1, *(int*)&f2);
printf("f1 = %10.9f\n", f1);
printf("f2 = %10.9f\n\n", f2);

f1 = 1E30;
f2 = 1E-30;
float f3 = f1 + f2;
printf("f1 == f3? %s\n", f1 == f3 ? "yes" : "no" );

return 0;
}

$ ./a.out
0x3f800000  0x3f800001
f1 = 1.000000000
f2 = 1.000000119

f1 == f3? yes
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Floating Point Summary

 Floats also suffer from the fixed number of bits 
available to represent them 
 Can get overflow/underflow
 “Gaps” produced in representable numbers means we can 

lose precision, unlike ints
• Some “simple fractions” have no exact representation (e.g. 0.2)
• “Every operation gets a slightly wrong result”

 Floating point arithmetic not associative or 
distributive
 Mathematically equivalent ways of writing an expression 

may compute different results
 Never test floating point values for equality!
 Careful when converting between ints and floats!

19
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Number Representation Really Matters

 1991: Patriot missile targeting error
 clock skew due to conversion from integer to floating point

 1996: Ariane 5 rocket exploded  ($1 billion)
 overflow converting 64-bit floating point to 16-bit integer

 2000: Y2K problem
 limited (decimal) representation: overflow, wrap-around

 2038: Unix epoch rollover
 Unix epoch = seconds since 12am, January 1, 1970
 signed 32-bit integer representation rolls over to TMin in 2038

 Other related bugs:
 1982: Vancouver Stock Exchange 10% error in less than 2 years
 1994: Intel Pentium FDIV (floating point division) HW bug ($475 million)
 1997: USS Yorktown “smart” warship stranded: divide by zero
 1998: Mars Climate Orbiter crashed: unit mismatch ($193 million)

20
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Roadmap
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car *c = malloc(sizeof(car));
c->miles = 100;
c->gals = 17;
float mpg = get_mpg(c);
free(c);

Car c = new Car();
c.setMiles(100);
c.setGals(17);
float mpg =

c.getMPG();

get_mpg:
pushq %rbp
movq %rsp, %rbp
...
popq %rbp
ret

Java:C:

Assembly 
language:

Machine 
code:

0111010000011000
100011010000010000000010
1000100111000010
110000011111101000011111

Computer 
system:

OS:

Memory & data
Integers & floats
x86 assembly
Procedures & stacks
Executables
Arrays & structs
Memory & caches
Processes
Virtual memory
Memory allocation
Java vs. C
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Translation

22

What makes programs run fast(er)?

Hardware
User

program
in C

AssemblerC
compiler

Code Time Compile Time Run Time

.exe file.c file
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C Language

HW Interface Affects Performance

23

x86-64

Intel Pentium 4

Intel Core 2

Intel Core i7

AMD Opteron

AMD Athlon

GCC

ARMv8
(AArch64/A64)

ARM Cortex-A53

Apple A7

Clang

Your 
program

Program 
B

Program 
A

CompilerSource code Architecture
Different applications
or algorithms

Perform optimizations,
generate instructions

Different 
implementations

Hardware
Instruction set
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Instruction Set Architectures

 The ISA defines:
 The system’s state (e.g. registers, memory, program 

counter)
 The instructions the CPU can execute
 The effect that each of these instructions will have on the 

system state

24

CPU

MemoryPC

Registers
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Instruction Set Philosophies

 Complex Instruction Set Computing (CISC): Add more 
and more elaborate and specialized instructions as 
needed 
 Lots of tools for programmers/compilers to use, but 

hardware must be able to handle all instructions
 x86-64 is CISC, but only a small subset of instructions 

encountered with Linux programs

 Reduced Instruction Set Computing (RISC):  Keep 
instruction set small and regular
 Easier to build fast hardware
 Let software do the complicated operations by composing 

simpler ones
25
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General ISA Design Decisions

 Instructions
 What instructions are available? What do they do?
 How are they encoded?

 Registers
 How many registers are there?
 How wide are they?

 Memory
 How do you specify a memory location?

26
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Mainstream ISAs

27

Macbooks & PCs
(Core i3, i5, i7, M)
x86-64 Instruction Set

Smartphone-like devices
(iPhone, iPad, Raspberry Pi)
ARM Instruction Set

Digital home & networking 
equipment
(Blu-ray, PlayStation 2)
MIPS Instruction Set

http://ref.x86asm.net/coder64-abc.html
http://infocenter.arm.com/help/topic/com.arm.doc.qrc0001m/QRC0001_UAL.pdf
https://inst.eecs.berkeley.edu/%7Ecs61c/resources/MIPS_Green_Sheet.pdf
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Definitions

 Architecture (ISA): The parts of a processor design 
that one needs to understand to write assembly code
 “What is directly visible to software”

 Microarchitecture: Implementation of the 
architecture
 CSE/EE 469, 470

 Are the following part of the architecture?
 Number of registers?
 How about CPU frequency?
 Cache size? Memory size?

28



CSE351, Spring 2018L07:  Floating Point II, x86-64 Intro

CPU

Assembly Programmer’s View

 Programmer-visible state
 PC:  the Program Counter (%rip in x86-64)

• Address of next instruction
 Named registers

• Together in “register file”
• Heavily used program data

 Condition codes
• Store status information about most recent 

arithmetic operation
• Used for conditional branching 29

PC Registers

Memory

• Code
• Data
• Stack

Addresses

Data

InstructionsCondition
Codes

 Memory
 Byte-addressable array
 Code and user data
 Includes the Stack (for 

supporting procedures)
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x86-64 Assembly “Data Types”
 Integral data of 1, 2, 4, or 8 bytes
 Data values
 Addresses (untyped pointers)

 Floating point data of 4, 8, 10 or 2x8 or 4x4 or 8x2
 Different registers for those (e.g. %xmm1, %ymm2)
 Come from extensions to x86 (SSE, AVX, …)

 No aggregate types such as arrays or structures
 Just contiguously allocated bytes in memory

 Two common syntaxes
 “AT&T”: used by our course, slides, textbook, gnu tools, …
 “Intel”: used by Intel documentation, Intel tools, …
 Must know which you’re reading

30

Not covered
In 351
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What is a Register?

 A location in the CPU that stores a small amount of 
data, which can be accessed very quickly (once every 
clock cycle)

 Registers have names, not addresses
 In assembly, they start with % (e.g. %rsi)

 Registers are at the heart of assembly programming
 They are a precious commodity in all architectures, but 

especially x86

31
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x86-64 Integer Registers – 64 bits wide

 Can reference low-order 4 bytes (also low-order 2 & 1 bytes)

32

%r8d%r8
%r9d%r9
%r10d%r10
%r11d%r11
%r12d%r12
%r13d%r13
%r14d%r14
%r15d%r15

%rsp %esp

%eax%rax
%ebx%rbx
%ecx%rcx
%edx%rdx
%esi%rsi
%edi%rdi

%ebp%rbp
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Some History: IA32 Registers – 32 bits wide

33

%esi %si

%edi %di

%esp %sp

%ebp %bp

%eax %ax %ah %al

%ecx %cx %ch %cl

%edx %dx %dh %dl

%ebx %bx %bh %bl

16-bit virtual registers
(backwards compatibility)

ge
ne

ra
l p

ur
po

se

accumulate

counter

data

base

source index

destination index

stack pointer

base pointer

Name Origin
(mostly obsolete)
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Memory vs. Registers

 Addresses vs. Names
 0x7FFFD024C3DC %rdi

 Big vs. Small
 ~ 8 GiB (16 x 8 B) = 128 B

 Slow vs. Fast
 ~50-100 ns sub-nanosecond timescale

 Dynamic vs. Static
 Can “grow” as needed fixed number in hardware

while program runs

34



CSE351, Spring 2018L07:  Floating Point II, x86-64 Intro

Three Basic Kinds of Instructions

1) Transfer data between memory and register
 Load data from memory into register

• %reg = Mem[address] 

 Store register data into memory
• Mem[address] = %reg

2) Perform arithmetic operation on register or memory 
data
 c = a + b;    z = x << y;    i = h & g;

3) Control flow:  what instruction to execute next
 Unconditional jumps to/from procedures
 Conditional branches

35

Remember: Memory 
is indexed just like an 
array of bytes!
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Operand types
 Immediate: Constant integer data
 Examples:  $0x400,  $-533
 Like C literal, but prefixed with ‘$’
 Encoded with 1, 2, 4, or 8 bytes 

depending on the instruction

 Register: 1 of 16 integer registers
 Examples:  %rax,  %r13
 But %rsp reserved for special use
 Others have special uses for particular 

instructions

 Memory: Consecutive bytes of memory 
at a computed address
 Simplest example:  (%rax)
 Various other “address modes”

36

%rax

%rcx

%rdx

%rbx

%rsi

%rdi

%rsp

%rbp

%rN
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Summary

 Converting between integral and floating point data 
types does change the bits 
 Floating point rounding is a HUGE issue!

• Limited mantissa bits cause inaccurate representations
• Floating point arithmetic is NOT associative or distributive

 x86-64 is a complex instruction set computing (CISC) 
architecture

 Registers are named locations in the CPU for holding 
and manipulating data
 x86-64 uses 16 64-bit wide registers

 Assembly operands include immediates, registers, 
and data at specified memory locations

37
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