
CSE351, Spring 2018L07: Floating Point II, x86-64 Intro

Floating Point II, x86-64 Intro
CSE 351 Spring 2018

http://xkcd.com/899/

http://xkcd.com/899/

CSE351, Spring 2018L07: Floating Point II, x86-64 Intro

Administrivia

 Lab 1 due Friday
 Submit bits.c, pointer.c, lab1reflect.txt

 Homework 2 due following Tuesday
 On Integers, Floating Point, and x86-64

2

CSE351, Spring 2018L07: Floating Point II, x86-64 Intro

Floating point topics

 Fractional binary numbers
 IEEE floating-point standard
 Floating-point operations and rounding
 Floating-point in C

 There are many more details that
we won’t cover
 It’s a 58-page standard…

3

CSE351, Spring 2018L07: Floating Point II, x86-64 Intro

Floating Point Encoding Summary

E M Meaning
0x00 0 ± 0
0x00 non-zero ± denorm num

0x01 – 0xFE anything ± norm num
0xFF 0 ± ∞
0xFF non-zero NaN

CSE351, Spring 2018L07: Floating Point II, x86-64 Intro

Distribution of Values

 What ranges are NOT representable?
 Between largest norm and infinity
 Between zero and smallest denorm
 Between norm numbers?

 Given a FP number, what’s the bit pattern of the next
largest representable number?
 What is this “step” when Exp = 0?
 What is this “step” when Exp = 100?

 Distribution of values is denser toward zero

5

-15 -10 -5 0 5 10 15
Denormalized Normalized Infinity

Overflow (Exp too large)
Underflow (Exp too small)
Rounding

Chart4

		0.005		0.25		15

		0.0625		0.3125		-15

		0.125		0.375

		0.1875		0.4375

		-0.005		0.5

		-0.0625		0.625

		-0.125		0.75

		-0.1875		0.875

				1

				1.25

				1.5

				1.75

				2

				2.5

				3

				3.5

				4

				5

				6

				7

				8

				10

				12

				14

				-0.25

				-0.3125

				-0.375

				-0.4375

				-0.5

				-0.625

				-0.75

				-0.875

				-1

				-1.25

				-1.5

				-1.75

				-2

				-2.5

				-3

				-3.5

				-4

				-5

				-6

				-7

				-8

				-10

				-12

				-14

Denormalized

Normalized

Infinity

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Sheet1

		

		0.02		0.25		0.5		0.75		-0.02		-0.25		-0.5		-0.75

		0		0		0		0		0		0		0		0

		1		1.25		1.5		1.75		2		2.5		3		3.5		-1		-1.25		-1.5		-1.75		-2		-2.5		-3		-3.5

		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		5		-5

		0		0

Sheet1

		

Denormalized

Normalized

Infinity

Sheet2

		1/3/2 FP Format

		Fractions

		Denormalized		0		0.25		0.5		0.75

		Normalized		1		1.25		1.5		1.75

		Exponents

		0.25		0.005		0.0625		0.125		0.1875

		0.25		0.25		0.3125		0.375		0.4375

		0.5		0.5		0.625		0.75		0.875

		1		1		1.25		1.5		1.75

		2		2		2.5		3		3.5

		4		4		5		6		7

		8		8		10		12		14

		0.005		0.0625		0.125		0.1875		-0.005		-0.0625		-0.125		-0.1875

		0		0		0		0		0		0		0		0

		0.25		0.3125		0.375		0.4375		0.5		0.625		0.75		0.875		1		1.25		1.5		1.75		2		2.5		3		3.5		4		5		6		7		8		10		12		14		-0.25		-0.3125		-0.375		-0.4375		-0.5		-0.625		-0.75		-0.875		-1		-1.25		-1.5		-1.75		-2		-2.5		-3		-3.5		-4		-5		-6		-7		-8		-10		-12		-14

		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		15		-15

		0		0

Sheet2

		

Denormalized

Normalized

Infinity

Sheet3

		

Denormalized

Normalized

Infinity

		

CSE351, Spring 2018L07: Floating Point II, x86-64 Intro

Floating Point Operations: Basic Idea

 x +f y = Round(x + y)

 x *f y = Round(x * y)

 Basic idea for floating point operations:
 First, compute the exact result
 Then round the result to make it fit into desired precision:

• Possibly over/underflow if exponent outside of range
• Possibly drop least-significant bits of mantissa to fit into M bit vector

6

S E M

Value = (-1)S×Mantissa×2Exponent

CSE351, Spring 2018L07: Floating Point II, x86-64 Intro

Floating Point Addition

 (-1)S1×Man1×2Exp1 + (-1)S2×Man2×2Exp2

 Assume Exp1 > Exp2

 Exact Result: (-1)S×Man×2Exp

 Sign S, mantissa Man:
• Result of signed align & add

 Exponent E: E1

 Adjustments:
 If Man ≥ 2, shift Man right, increment Exp
 If Man < 1, shift Man left 𝑘𝑘 positions, decrement Exp by 𝑘𝑘
 Over/underflow if Exp out of range
 Round Man to fit mantissa precision

7

(-1)S1 Man1
(-1)S2 Man2

Exp1–Exp2

+
(-1)S Man

Line up the binary points!

1.010*22

+ 1.000*2-1

???

1.0100*22

+ 0.0010*22

1.0110*22

CSE351, Spring 2018L07: Floating Point II, x86-64 Intro

Floating Point Multiplication

 (-1)S1×Man1×2Exp1 × (-1)S2×Man2×2Exp2

 Exact Result:
 Sign S: S1 ^ S2
 Mantissa Man: Man1 × Man2
 Exponent Exp: Exp1 + Exp2

 Adjustments:
 If Man ≥ 2, shift Man right, increment Exp
 Over/underflow if Exp out of range
 Round Man to fit mantissa precision

8

CSE351, Spring 2018L07: Floating Point II, x86-64 Intro

Mathematical Properties of FP Operations

 Exponent overflow yields +∞ or -∞
 Floats with value +∞, -∞, and NaN can be used in

operations
 Result usually still +∞, -∞, or NaN; but not always intuitive

 Floating point operations do not work like real math,
due to rounding – any programmer using floats in any
language must understand these issues!

9

CSE351, Spring 2018L07: Floating Point II, x86-64 Intro

Mathematical Properties of FP Operations

Rounding issue 1: No exact representation of some
“fractions”

(1.0 / 3) * 3 != 1.0

10

CSE351, Spring 2018L07: Floating Point II, x86-64 Intro

Mathematical Properties of FP Operations

Rounding issue 2: Limited mantissa means lost precision

(3.14 + 1e100) – 1e100 == 0.0

Addition/subtraction no longer associative

3.14 + (1e100 – 1e100) == 3.14

11

CSE351, Spring 2018L07: Floating Point II, x86-64 Intro

Mathematical Properties of FP Operations

Lack of associativity can be worse with loops:

float x = huge_number;
for(i=0; i < large_number; i++)

x += small_number;

vs.
float x = 0;
for(i=0; i < large_number; i++)

x += small_number;
x += huge_number;

12

CSE351, Spring 2018L07: Floating Point II, x86-64 Intro

Mathematical Properties of FP Operations

Rounding issue 3: No distributivity either

printf("%.20f %.20f\n",
100*(0.1+0.2),
100*0.1 + 100*0.2);

30.00000000000000355271
30.00000000000000000000

13

CSE351, Spring 2018L07: Floating Point II, x86-64 Intro

Floating-point guidelines

 Assume possible small rounding at every operation
 Can compound across many operations

 Also beware overflow (infinity) and underflow (zero)

 Never compare floats for equality (cf. rounding)
 Compiler won’t complain, but a very likely bug (!)
 Ask if |e1-e2| is “small” for some “small” you care about

 This and preceding slides are the “key takeaways”
 Justified by your understanding of the bit-representation and the trade-

offs it is dealing with
 Floats work fine for simple stuff, else hard to do mathematically correct

things (cf. numerical analysis)
14

!!!

CSE351, Spring 2018L07: Floating Point II, x86-64 Intro

Floating point topics

 Fractional binary numbers
 IEEE floating-point standard
 Floating-point operations and rounding
 Floating-point in C

 There are many more details that
we won’t cover
 It’s a 58-page standard…

15

CSE351, Spring 2018L07: Floating Point II, x86-64 Intro

Floating Point in C

 C offers two (well, 3) levels of precision
float 1.0f single precision (32-bit)
double 1.0 double precision (64-bit)
long double 1.0L (“double double” or quadruple)

precision (64-128 bits)

 #include <math.h> to get INFINITY and NAN
constants

 Equality (==) comparisons are allowed but shouldn’t
be used
 Interesting tidbit: 0.0 == -0.0 despite different bits

16

CSE351, Spring 2018L07: Floating Point II, x86-64 Intro

Floating Point Conversions in C

 Casting between int, float, and double changes
the bit representation
 int → float

• May be rounded (not enough bits in mantissa: 23)
• Overflow impossible

 int or float → double
• Exact conversion (all 32-bit ints representable)

 long → double
• Depends on word size (32-bit is exact, 64-bit may be rounded)

 double or float → int
• Truncates fractional part (rounded toward zero)
• “Not defined” when out of range or NaN: generally sets to Tmin

(even if the value is a very big positive)
17

!!!

CSE351, Spring 2018L07: Floating Point II, x86-64 Intro

Floating Point and the Programmer

18

#include <stdio.h>

int main(int argc, char* argv[]) {
float f1 = 1.0;
float f2 = 0.0;
int i;
for (i = 0; i < 10; i++)
f2 += 1.0/10.0;

printf("0x%08x 0x%08x\n", *(int*)&f1, *(int*)&f2);
printf("f1 = %10.9f\n", f1);
printf("f2 = %10.9f\n\n", f2);

f1 = 1E30;
f2 = 1E-30;
float f3 = f1 + f2;
printf("f1 == f3? %s\n", f1 == f3 ? "yes" : "no");

return 0;
}

$./a.out
0x3f800000 0x3f800001
f1 = 1.000000000
f2 = 1.000000119

f1 == f3? yes

CSE351, Spring 2018L07: Floating Point II, x86-64 Intro

Floating Point Summary

 Floats also suffer from the fixed number of bits
available to represent them
 Can get overflow/underflow
 “Gaps” produced in representable numbers means we can

lose precision, unlike ints
• Some “simple fractions” have no exact representation (e.g. 0.2)
• “Every operation gets a slightly wrong result”

 Floating point arithmetic not associative or
distributive
 Mathematically equivalent ways of writing an expression

may compute different results
 Never test floating point values for equality!
 Careful when converting between ints and floats!

19

CSE351, Spring 2018L07: Floating Point II, x86-64 Intro

Number Representation Really Matters

 1991: Patriot missile targeting error
 clock skew due to conversion from integer to floating point

 1996: Ariane 5 rocket exploded ($1 billion)
 overflow converting 64-bit floating point to 16-bit integer

 2000: Y2K problem
 limited (decimal) representation: overflow, wrap-around

 2038: Unix epoch rollover
 Unix epoch = seconds since 12am, January 1, 1970
 signed 32-bit integer representation rolls over to TMin in 2038

 Other related bugs:
 1982: Vancouver Stock Exchange 10% error in less than 2 years
 1994: Intel Pentium FDIV (floating point division) HW bug ($475 million)
 1997: USS Yorktown “smart” warship stranded: divide by zero
 1998: Mars Climate Orbiter crashed: unit mismatch ($193 million)

20

CSE351, Spring 2018L07: Floating Point II, x86-64 Intro

Roadmap

21

car *c = malloc(sizeof(car));
c->miles = 100;
c->gals = 17;
float mpg = get_mpg(c);
free(c);

Car c = new Car();
c.setMiles(100);
c.setGals(17);
float mpg =

c.getMPG();

get_mpg:
pushq %rbp
movq %rsp, %rbp
...
popq %rbp
ret

Java:C:

Assembly
language:

Machine
code:

0111010000011000
100011010000010000000010
1000100111000010
110000011111101000011111

Computer
system:

OS:

Memory & data
Integers & floats
x86 assembly
Procedures & stacks
Executables
Arrays & structs
Memory & caches
Processes
Virtual memory
Memory allocation
Java vs. C

CSE351, Spring 2018L07: Floating Point II, x86-64 Intro

Translation

22

What makes programs run fast(er)?

Hardware
User

program
in C

AssemblerC
compiler

Code Time Compile Time Run Time

.exe file.c file

CSE351, Spring 2018L07: Floating Point II, x86-64 Intro

C Language

HW Interface Affects Performance

23

x86-64

Intel Pentium 4

Intel Core 2

Intel Core i7

AMD Opteron

AMD Athlon

GCC

ARMv8
(AArch64/A64)

ARM Cortex-A53

Apple A7

Clang

Your
program

Program
B

Program
A

CompilerSource code Architecture
Different applications
or algorithms

Perform optimizations,
generate instructions

Different
implementations

Hardware
Instruction set

CSE351, Spring 2018L07: Floating Point II, x86-64 Intro

Instruction Set Architectures

 The ISA defines:
 The system’s state (e.g. registers, memory, program

counter)
 The instructions the CPU can execute
 The effect that each of these instructions will have on the

system state

24

CPU

MemoryPC

Registers

CSE351, Spring 2018L07: Floating Point II, x86-64 Intro

Instruction Set Philosophies

 Complex Instruction Set Computing (CISC): Add more
and more elaborate and specialized instructions as
needed
 Lots of tools for programmers/compilers to use, but

hardware must be able to handle all instructions
 x86-64 is CISC, but only a small subset of instructions

encountered with Linux programs

 Reduced Instruction Set Computing (RISC): Keep
instruction set small and regular
 Easier to build fast hardware
 Let software do the complicated operations by composing

simpler ones
25

CSE351, Spring 2018L07: Floating Point II, x86-64 Intro

General ISA Design Decisions

 Instructions
 What instructions are available? What do they do?
 How are they encoded?

 Registers
 How many registers are there?
 How wide are they?

 Memory
 How do you specify a memory location?

26

CSE351, Spring 2018L07: Floating Point II, x86-64 Intro

Mainstream ISAs

27

Macbooks & PCs
(Core i3, i5, i7, M)
x86-64 Instruction Set

Smartphone-like devices
(iPhone, iPad, Raspberry Pi)
ARM Instruction Set

Digital home & networking
equipment
(Blu-ray, PlayStation 2)
MIPS Instruction Set

http://ref.x86asm.net/coder64-abc.html
http://infocenter.arm.com/help/topic/com.arm.doc.qrc0001m/QRC0001_UAL.pdf
https://inst.eecs.berkeley.edu/%7Ecs61c/resources/MIPS_Green_Sheet.pdf

CSE351, Spring 2018L07: Floating Point II, x86-64 Intro

Definitions

 Architecture (ISA): The parts of a processor design
that one needs to understand to write assembly code
 “What is directly visible to software”

 Microarchitecture: Implementation of the
architecture
 CSE/EE 469, 470

 Are the following part of the architecture?
 Number of registers?
 How about CPU frequency?
 Cache size? Memory size?

28

CSE351, Spring 2018L07: Floating Point II, x86-64 Intro

CPU

Assembly Programmer’s View

 Programmer-visible state
 PC: the Program Counter (%rip in x86-64)

• Address of next instruction
 Named registers

• Together in “register file”
• Heavily used program data

 Condition codes
• Store status information about most recent

arithmetic operation
• Used for conditional branching 29

PC Registers

Memory

• Code
• Data
• Stack

Addresses

Data

InstructionsCondition
Codes

 Memory
 Byte-addressable array
 Code and user data
 Includes the Stack (for

supporting procedures)

CSE351, Spring 2018L07: Floating Point II, x86-64 Intro

x86-64 Assembly “Data Types”
 Integral data of 1, 2, 4, or 8 bytes
 Data values
 Addresses (untyped pointers)

 Floating point data of 4, 8, 10 or 2x8 or 4x4 or 8x2
 Different registers for those (e.g. %xmm1, %ymm2)
 Come from extensions to x86 (SSE, AVX, …)

 No aggregate types such as arrays or structures
 Just contiguously allocated bytes in memory

 Two common syntaxes
 “AT&T”: used by our course, slides, textbook, gnu tools, …
 “Intel”: used by Intel documentation, Intel tools, …
 Must know which you’re reading

30

Not covered
In 351

CSE351, Spring 2018L07: Floating Point II, x86-64 Intro

What is a Register?

 A location in the CPU that stores a small amount of
data, which can be accessed very quickly (once every
clock cycle)

 Registers have names, not addresses
 In assembly, they start with % (e.g. %rsi)

 Registers are at the heart of assembly programming
 They are a precious commodity in all architectures, but

especially x86

31

CSE351, Spring 2018L07: Floating Point II, x86-64 Intro

x86-64 Integer Registers – 64 bits wide

 Can reference low-order 4 bytes (also low-order 2 & 1 bytes)

32

%r8d%r8
%r9d%r9
%r10d%r10
%r11d%r11
%r12d%r12
%r13d%r13
%r14d%r14
%r15d%r15

%rsp %esp

%eax%rax
%ebx%rbx
%ecx%rcx
%edx%rdx
%esi%rsi
%edi%rdi

%ebp%rbp

CSE351, Spring 2018L07: Floating Point II, x86-64 Intro

Some History: IA32 Registers – 32 bits wide

33

%esi %si

%edi %di

%esp %sp

%ebp %bp

%eax %ax %ah %al

%ecx %cx %ch %cl

%edx %dx %dh %dl

%ebx %bx %bh %bl

16-bit virtual registers
(backwards compatibility)

ge
ne

ra
l p

ur
po

se

accumulate

counter

data

base

source index

destination index

stack pointer

base pointer

Name Origin
(mostly obsolete)

CSE351, Spring 2018L07: Floating Point II, x86-64 Intro

Memory vs. Registers

 Addresses vs. Names
 0x7FFFD024C3DC %rdi

 Big vs. Small
 ~ 8 GiB (16 x 8 B) = 128 B

 Slow vs. Fast
 ~50-100 ns sub-nanosecond timescale

 Dynamic vs. Static
 Can “grow” as needed fixed number in hardware

while program runs

34

CSE351, Spring 2018L07: Floating Point II, x86-64 Intro

Three Basic Kinds of Instructions

1) Transfer data between memory and register
 Load data from memory into register

• %reg = Mem[address]

 Store register data into memory
• Mem[address] = %reg

2) Perform arithmetic operation on register or memory
data
 c = a + b; z = x << y; i = h & g;

3) Control flow: what instruction to execute next
 Unconditional jumps to/from procedures
 Conditional branches

35

Remember: Memory
is indexed just like an
array of bytes!

CSE351, Spring 2018L07: Floating Point II, x86-64 Intro

Operand types
 Immediate: Constant integer data
 Examples: $0x400, $-533
 Like C literal, but prefixed with ‘$’
 Encoded with 1, 2, 4, or 8 bytes

depending on the instruction

 Register: 1 of 16 integer registers
 Examples: %rax, %r13
 But %rsp reserved for special use
 Others have special uses for particular

instructions

 Memory: Consecutive bytes of memory
at a computed address
 Simplest example: (%rax)
 Various other “address modes”

36

%rax

%rcx

%rdx

%rbx

%rsi

%rdi

%rsp

%rbp

%rN

CSE351, Spring 2018L07: Floating Point II, x86-64 Intro

Summary

 Converting between integral and floating point data
types does change the bits
 Floating point rounding is a HUGE issue!

• Limited mantissa bits cause inaccurate representations
• Floating point arithmetic is NOT associative or distributive

 x86-64 is a complex instruction set computing (CISC)
architecture

 Registers are named locations in the CPU for holding
and manipulating data
 x86-64 uses 16 64-bit wide registers

 Assembly operands include immediates, registers,
and data at specified memory locations

37

	Floating Point II, x86-64 Intro�CSE 351 Spring 2018
	Administrivia
	Floating point topics
	Floating Point Encoding Summary
	Distribution of Values
	Floating Point Operations: Basic Idea
	Floating Point Addition
	Floating Point Multiplication
	Mathematical Properties of FP Operations
	Mathematical Properties of FP Operations
	Mathematical Properties of FP Operations
	Mathematical Properties of FP Operations
	Mathematical Properties of FP Operations
	Floating-point guidelines
	Floating point topics
	Floating Point in C
	Floating Point Conversions in C
	Floating Point and the Programmer
	Floating Point Summary
	Number Representation Really Matters
	Roadmap
	Translation
	HW Interface Affects Performance
	Instruction Set Architectures
	Instruction Set Philosophies
	General ISA Design Decisions
	Mainstream ISAs
	Definitions
	Assembly Programmer’s View
	x86-64 Assembly “Data Types”
	What is a Register?
	x86-64 Integer Registers – 64 bits wide
	Some History: IA32 Registers – 32 bits wide
		Memory 		vs.	Registers
	Three Basic Kinds of Instructions
	Operand types
	Summary

