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Administrivia

 Lab 1 Prelim due Monday at 11:59pm
 Only submit bits.c

 Lab 1 due next Friday 
 Submit bits.c, pointer.c, lab1reflect.txt

 Homework 2 released Monday, due Tuesday 4/17
 On Integers, Floating Point, and x86-64
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Unsigned Multiplication in C

 Standard Multiplication Function
 Ignores high order 𝑤𝑤 bits

 Implements Modular Arithmetic
 UMultw(u , v)= u · v mod 2w
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True Product:
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Multiplication with shift and add
 Operation  u<<k gives  u*2k

 Both signed and unsigned

 Examples:
 u<<3 == u * 8

 u<<5 - u<<3 == u * 24

 Most machines shift and add faster than multiply
• Compiler generates this code automatically
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• • •u

2k*

u · 2kTrue Product:  𝒘𝒘 + 𝒌𝒌 bits

Operands:  𝒘𝒘 bits

Discard 𝑘𝑘 bits: 𝒘𝒘 bits UMultw(u , 2k)

0 0 1 0 0 0••• •••
k

• • • 0 0 0•••

TMultw(u , 2k)
0 0 0••••••
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Number Representation Revisited

 What can we represent in one word?
 Signed and Unsigned Integers
 Characters (ASCII)
 Addresses

 How do we encode the following:
 Real numbers (e.g. 3.14159)
 Very large numbers (e.g. 6.02×1023)
 Very small numbers (e.g. 6.626×10-34)
 Special numbers (e.g. ∞, NaN)
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Floating Point Topics
 Fractional binary numbers
 IEEE floating-point standard
 Floating-point operations and rounding
 Floating-point in C

 There are many more details that 
we won’t cover
 It’s a 58-page standard (!)
 But there are essential gotchas you must know 

(since almost every language uses floating-point 
as defined by the standard)
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Representation of Fractions

 “Binary Point,” like decimal point, signifies boundary 
between integer and fractional parts:

Example 6-bit
representation:

 Example: 10.10102 = 1×21 + 1×2-1 + 1×2-3 = 2.62510

 Binary point numbers that match the 6-bit format 
above range from 0 (00.00002) to 3.9375 (11.11112) 
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Scientific Notation (Decimal)

 Normalized form: exactly one digit (non-zero) to left 
of decimal point

 Alternatives to representing 1/1,000,000,000
 Normalized: 1.0×10-9

 Not normalized: 0.1×10-8,10.0×10-10
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6.0210 × 1023

radix (base)decimal point

mantissa exponent
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Scientific Notation (Binary)

 Computer arithmetic that supports this called floating 
point due to the “floating” of the binary point
 Declare such variable in C as float (or double)
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1.012 × 2-1

radix (base)binary point

exponentmantissa
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Scientific Notation Translation

 Convert from scientific notation to binary point
 Perform the multiplication by shifting the decimal until the exponent 

disappears
• Example:  1.0112×24 = 101102 = 2210

• Example:  1.0112×2-2 = 0.010112 = 0.3437510

 Convert from binary point to normalized scientific notation
 Adjust exponent so binary point is to the right of a single digit

• Example:  1101.0012 = 1.1010012×23

 Practice:  Convert 11.37510 to binary scientific notation

 Practice: Convert 1/5 to binary
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Floating Point Topics

 Fractional binary numbers
 IEEE floating-point standard
 Floating-point operations and rounding
 Floating-point in C

 There are many more details that 
we won’t cover
 It’s a 58-page standard…
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IEEE Floating Point
 IEEE 754 
 Established in 1985 as uniform standard for floating point arithmetic
 Main idea: make numerically sensitive programs portable
 Specifies two things: representation and result of floating operations
 Now supported by all major CPUs

 Driven by numerical concerns
 Scientists/numerical analysts want them to be as real as possible
 Engineers want them to be easy to implement and fast
 In the end:

• Scientists mostly won out
• Portable standards for rounding, overflow, underflow, but...
• Hard to make fast in hardware
• Float operations can be an order of magnitude slower than integer ops
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Floating Point Encoding

 Use normalized, base 2 scientific notation:
 Value: ±1 × Mantissa × 2Exponent

 Bit Fields: (-1)S × 1.M × 2(E–bias)

 Representation Scheme:
 Sign bit (0 is positive, 1 is negative)
 Mantissa (a.k.a. significand) is the fractional part of the 

number in normalized form and encoded in bit vector M
 Exponent weights the value by a (possibly negative) power 

of 2 and encoded in the bit vector E
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S E M
31 30 23 22 0

1 bit 8 bits 23 bits
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The Exponent Field

 Use biased notation
 Read exponent as unsigned, but with bias of 2w-1-1 = 127
 Representable exponents roughly ½ positive and ½ negative
 Exponent 0 (Exp = 0) is represented as E = 0b 0111 1111

 Why biased?
 Makes floating point arithmetic easier
 (It’s not two’s complement)

 Practice:  To encode in biased notation, add the bias then 
encode in unsigned:
 Exp = 1 → → E = 0b 
 Exp = 127 → → E = 0b 
 Exp = -63 → → E = 0b 
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The Mantissa (Fraction) Field

 Note the implicit 1 in front of the M bit vector
 Example:  0b 0011 1111 1100 0000 0000 0000 0000 0000

is read as  1.12 = 1.510, not 0.12 = 0.510

 Gives us an extra bit of precision

 Mantissa “limits”
 Low values near M = 0b0…0 are close to 2Exp

 High values near M = 0b1…1 are close to 2Exp+1
15

(-1)S x (1 . M) x 2(E–bias)

S E M
31 30 23 22 0

1 bit 8 bits 23 bits
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Peer Instruction Question

 What is the correct value encoded by the following 
floating point number?
 0b  0  10000000  11000000000000000000000

A. + 0.75
B. + 1.5
C. + 2.75
D. + 3.5
E. We’re lost…
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Precision and Accuracy

 Precision is a count of the number of bits in a 
computer word used to represent a value
 Capacity for accuracy

 Accuracy is a measure of the difference between the 
actual value of a number and its computer 
representation

 High precision permits high accuracy but doesn’t guarantee 
it.  It is possible to have high precision but low accuracy.
 Example: float pi = 3.14;

• pi will be represented using all 24 bits of the mantissa (highly 
precise), but is only an approximation (not accurate)
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Need More Precision and/or Range?
 Double Precision (vs. Single Precision) in 64 bits

 C/Java variable declared as double
 Exponent bias is now 210–1 = 1023
 Advantages: greater precision (larger mantissa), 

holds a 4-byte int without rounding
greater range (larger exponent)

 Disadvantages: more bits used,
slower to manipulate
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S E (11) M (20 of 52)
63 62 52 51 32

M (32 of 52)
31 0
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Representing Very Small Numbers

 But wait… what happened to zero?
 Using standard encoding 0x00000000 = 
 Special case: E and M all zeros = 0

• Two zeros!  But at least 0x00000000 = 0 like integers

 New numbers closest to 0:
 a = 1.0…02×2-126 = 2-126

 b = 1.0…012×2-126 = 2-126 + 2-149

 Normalization and implicit 1 are to blame
 Special case: E = 0, M ≠ 0 are denormalized numbers
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0
+∞-∞

Gaps!

a
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Denorm Numbers

 Denormalized numbers
 No leading 1
 Uses implicit exponent of –126 even though E = 0x00

 Denormalized numbers close the gap between zero 
and the smallest normalized number
 Smallest norm: ± 1.0…0two×2-126 = ± 2-126

 Smallest denorm: ± 0.0…01two×2-126 = ± 2-149

• There is still a gap between zero and the smallest denormalized
number

20

So much
closer to 0

This is extra 
(non-testable) 

material
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Other Special Cases

 E = 0xFF, M = 0:  ± ∞
 e.g. division by 0
 Still work in comparisons!

 E = 0xFF, M ≠ 0:  Not a Number (NaN)
 e.g. square root of negative number, 0/0, ∞–∞
 NaN propagates through computations

 New largest value (besides ∞)?
 E = 0xFF has now been taken!
 E = 0xFE has largest:  1.1…12×2127 = 2128 – 2104
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Floating Point Encoding Summary

E M Meaning
0x00 0 ± 0
0x00 non-zero ± denorm num

0x01 – 0xFE anything ± norm num
0xFF 0 ± ∞
0xFF non-zero NaN
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Summary

 Floating point approximates real numbers:

 Handles large numbers, small numbers, special numbers
 Exponent in biased notation (bias = 2w-1–1)

• Outside of representable exponents is overflow and underflow

 Mantissa approximates fractional portion of binary point
• Implicit leading 1 (normalized) except in special cases
• Exceeding length causes rounding
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S E (8) M (23)
31 30 23 22 0

E M Meaning
0x00 0 ± 0
0x00 non-zero ± denorm num

0x01 – 0xFE anything ± norm num
0xFF 0 ± ∞
0xFF non-zero NaN
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An example that applies the IEEE Floating Point 
concepts to a smaller (8-bit) representation scheme.  
These slides expand on material covered today, so 
while you don’t need to read these, the information is 
“fair game.”
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Tiny Floating Point Example

 8-bit Floating Point Representation
 The sign bit is in the most significant bit (MSB)
 The next four bits are the exponent, with a bias of 24-1–1 = 7
 The last three bits are the mantissa

 Same general form as IEEE Format
 Normalized binary scientific point notation
 Similar special cases for 0, denormalized numbers, NaN, ∞

25

s exp man

1 4 3
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Dynamic Range (Positive Only)

26

S E M Exp Value

0 0000 000 -6 0
0 0000 001 -6 1/8*1/64 = 1/512
0 0000 010 -6 2/8*1/64 = 2/512
…
0 0000 110 -6 6/8*1/64 = 6/512
0 0000 111 -6 7/8*1/64 = 7/512
0 0001 000 -6 8/8*1/64 = 8/512
0 0001 001  -6 9/8*1/64 = 9/512
…
0 0110 110 -1 14/8*1/2 = 14/16
0 0110 111 -1 15/8*1/2 = 15/16
0 0111 000 0 8/8*1    = 1
0 0111 001 0 9/8*1    = 9/8
0 0111 010 0 10/8*1   = 10/8
…
0 1110 110 7 14/8*128 = 224
0 1110 111 7 15/8*128 = 240
0 1111 000 n/a inf

closest to zero

largest denorm
smallest norm

closest to 1 below

closest to 1 above

largest norm

Denormalized
numbers

Normalized
numbers
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Special Properties of Encoding
 Floating point zero (0+) exactly the same bits as integer zero
 All bits = 0

 Can (Almost) Use Unsigned Integer Comparison
 Must first compare sign bits
 Must consider 0- = 0+ = 0
 NaNs problematic

• Will be greater than any other values
• What should comparison yield?

 Otherwise OK
• Denorm vs. normalized
• Normalized vs. infinity
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