
CSE351, Spring 2018L06: Floating Point

Floating Point
CSE 351 Spring 2018

http://xkcd.com/571/

http://xkcd.com/257/

CSE351, Spring 2018L06: Floating Point

Administrivia

 Lab 1 Prelim due Monday at 11:59pm
 Only submit bits.c

 Lab 1 due next Friday
 Submit bits.c, pointer.c, lab1reflect.txt

 Homework 2 released Monday, due Tuesday 4/17
 On Integers, Floating Point, and x86-64

2

CSE351, Spring 2018L06: Floating Point

Unsigned Multiplication in C

 Standard Multiplication Function
 Ignores high order 𝑤𝑤 bits

 Implements Modular Arithmetic
 UMultw(u , v)= u · v mod 2w

3

• • •

• • •

u

v
*

• • •u · v

• • •

True Product:
𝟐𝟐𝟐𝟐 bits

Operands:
𝒘𝒘 bits

Discard 𝑤𝑤 bits:
𝒘𝒘 bits

UMultw(u , v)

• • •

CSE351, Spring 2018L06: Floating Point

Multiplication with shift and add
 Operation u<<k gives u*2k

 Both signed and unsigned

 Examples:
 u<<3 == u * 8

 u<<5 - u<<3 == u * 24

 Most machines shift and add faster than multiply
• Compiler generates this code automatically

4

• • •u

2k*

u · 2kTrue Product: 𝒘𝒘 + 𝒌𝒌 bits

Operands: 𝒘𝒘 bits

Discard 𝑘𝑘 bits: 𝒘𝒘 bits UMultw(u , 2k)

0 0 1 0 0 0••• •••
k

• • • 0 0 0•••

TMultw(u , 2k)
0 0 0••••••

CSE351, Spring 2018L06: Floating Point

Number Representation Revisited

 What can we represent in one word?
 Signed and Unsigned Integers
 Characters (ASCII)
 Addresses

 How do we encode the following:
 Real numbers (e.g. 3.14159)
 Very large numbers (e.g. 6.02×1023)
 Very small numbers (e.g. 6.626×10-34)
 Special numbers (e.g. ∞, NaN)

5

Floating
Point

CSE351, Spring 2018L06: Floating Point

Floating Point Topics
 Fractional binary numbers
 IEEE floating-point standard
 Floating-point operations and rounding
 Floating-point in C

 There are many more details that
we won’t cover
 It’s a 58-page standard (!)
 But there are essential gotchas you must know

(since almost every language uses floating-point
as defined by the standard)

6

CSE351, Spring 2018L06: Floating Point

Representation of Fractions

 “Binary Point,” like decimal point, signifies boundary
between integer and fractional parts:

Example 6-bit
representation:

 Example: 10.10102 = 1×21 + 1×2-1 + 1×2-3 = 2.62510

 Binary point numbers that match the 6-bit format
above range from 0 (00.00002) to 3.9375 (11.11112)

7

xx.yyyy
21

20 2-1 2-2 2-3 2-4

CSE351, Spring 2018L06: Floating Point

Scientific Notation (Decimal)

 Normalized form: exactly one digit (non-zero) to left
of decimal point

 Alternatives to representing 1/1,000,000,000
 Normalized: 1.0×10-9

 Not normalized: 0.1×10-8,10.0×10-10

8

6.0210 × 1023

radix (base)decimal point

mantissa exponent

CSE351, Spring 2018L06: Floating Point

Scientific Notation (Binary)

 Computer arithmetic that supports this called floating
point due to the “floating” of the binary point
 Declare such variable in C as float (or double)

9

1.012 × 2-1

radix (base)binary point

exponentmantissa

CSE351, Spring 2018L06: Floating Point

Scientific Notation Translation

 Convert from scientific notation to binary point
 Perform the multiplication by shifting the decimal until the exponent

disappears
• Example: 1.0112×24 = 101102 = 2210

• Example: 1.0112×2-2 = 0.010112 = 0.3437510

 Convert from binary point to normalized scientific notation
 Adjust exponent so binary point is to the right of a single digit

• Example: 1101.0012 = 1.1010012×23

 Practice: Convert 11.37510 to binary scientific notation

 Practice: Convert 1/5 to binary

10

CSE351, Spring 2018L06: Floating Point

Floating Point Topics

 Fractional binary numbers
 IEEE floating-point standard
 Floating-point operations and rounding
 Floating-point in C

 There are many more details that
we won’t cover
 It’s a 58-page standard…

11

CSE351, Spring 2018L06: Floating Point

IEEE Floating Point
 IEEE 754
 Established in 1985 as uniform standard for floating point arithmetic
 Main idea: make numerically sensitive programs portable
 Specifies two things: representation and result of floating operations
 Now supported by all major CPUs

 Driven by numerical concerns
 Scientists/numerical analysts want them to be as real as possible
 Engineers want them to be easy to implement and fast
 In the end:

• Scientists mostly won out
• Portable standards for rounding, overflow, underflow, but...
• Hard to make fast in hardware
• Float operations can be an order of magnitude slower than integer ops

12

CSE351, Spring 2018L06: Floating Point

Floating Point Encoding

 Use normalized, base 2 scientific notation:
 Value: ±1 × Mantissa × 2Exponent

 Bit Fields: (-1)S × 1.M × 2(E–bias)

 Representation Scheme:
 Sign bit (0 is positive, 1 is negative)
 Mantissa (a.k.a. significand) is the fractional part of the

number in normalized form and encoded in bit vector M
 Exponent weights the value by a (possibly negative) power

of 2 and encoded in the bit vector E

13

S E M
31 30 23 22 0

1 bit 8 bits 23 bits

CSE351, Spring 2018L06: Floating Point

The Exponent Field

 Use biased notation
 Read exponent as unsigned, but with bias of 2w-1-1 = 127
 Representable exponents roughly ½ positive and ½ negative
 Exponent 0 (Exp = 0) is represented as E = 0b 0111 1111

 Why biased?
 Makes floating point arithmetic easier
 (It’s not two’s complement)

 Practice: To encode in biased notation, add the bias then
encode in unsigned:
 Exp = 1 → → E = 0b
 Exp = 127 → → E = 0b
 Exp = -63 → → E = 0b

14

CSE351, Spring 2018L06: Floating Point

The Mantissa (Fraction) Field

 Note the implicit 1 in front of the M bit vector
 Example: 0b 0011 1111 1100 0000 0000 0000 0000 0000

is read as 1.12 = 1.510, not 0.12 = 0.510

 Gives us an extra bit of precision

 Mantissa “limits”
 Low values near M = 0b0…0 are close to 2Exp

 High values near M = 0b1…1 are close to 2Exp+1
15

(-1)S x (1 . M) x 2(E–bias)

S E M
31 30 23 22 0

1 bit 8 bits 23 bits

CSE351, Spring 2018L06: Floating Point

Peer Instruction Question

 What is the correct value encoded by the following
floating point number?
 0b 0 10000000 11000000000000000000000

A. + 0.75
B. + 1.5
C. + 2.75
D. + 3.5
E. We’re lost…

16

CSE351, Spring 2018L06: Floating Point

Precision and Accuracy

 Precision is a count of the number of bits in a
computer word used to represent a value
 Capacity for accuracy

 Accuracy is a measure of the difference between the
actual value of a number and its computer
representation

 High precision permits high accuracy but doesn’t guarantee
it. It is possible to have high precision but low accuracy.
 Example: float pi = 3.14;

• pi will be represented using all 24 bits of the mantissa (highly
precise), but is only an approximation (not accurate)

17

CSE351, Spring 2018L06: Floating Point

Need More Precision and/or Range?
 Double Precision (vs. Single Precision) in 64 bits

 C/Java variable declared as double
 Exponent bias is now 210–1 = 1023
 Advantages: greater precision (larger mantissa),

holds a 4-byte int without rounding
greater range (larger exponent)

 Disadvantages: more bits used,
slower to manipulate

18

S E (11) M (20 of 52)
63 62 52 51 32

M (32 of 52)
31 0

CSE351, Spring 2018L06: Floating Point

Representing Very Small Numbers

 But wait… what happened to zero?
 Using standard encoding 0x00000000 =
 Special case: E and M all zeros = 0

• Two zeros! But at least 0x00000000 = 0 like integers

 New numbers closest to 0:
 a = 1.0…02×2-126 = 2-126

 b = 1.0…012×2-126 = 2-126 + 2-149

 Normalization and implicit 1 are to blame
 Special case: E = 0, M ≠ 0 are denormalized numbers

19

0
+∞-∞

Gaps!

a

b

CSE351, Spring 2018L06: Floating Point

Denorm Numbers

 Denormalized numbers
 No leading 1
 Uses implicit exponent of –126 even though E = 0x00

 Denormalized numbers close the gap between zero
and the smallest normalized number
 Smallest norm: ± 1.0…0two×2-126 = ± 2-126

 Smallest denorm: ± 0.0…01two×2-126 = ± 2-149

• There is still a gap between zero and the smallest denormalized
number

20

So much
closer to 0

This is extra
(non-testable)

material

CSE351, Spring 2018L06: Floating Point

Other Special Cases

 E = 0xFF, M = 0: ± ∞
 e.g. division by 0
 Still work in comparisons!

 E = 0xFF, M ≠ 0: Not a Number (NaN)
 e.g. square root of negative number, 0/0, ∞–∞
 NaN propagates through computations

 New largest value (besides ∞)?
 E = 0xFF has now been taken!
 E = 0xFE has largest: 1.1…12×2127 = 2128 – 2104

21

CSE351, Spring 2018L06: Floating Point

Floating Point Encoding Summary

E M Meaning
0x00 0 ± 0
0x00 non-zero ± denorm num

0x01 – 0xFE anything ± norm num
0xFF 0 ± ∞
0xFF non-zero NaN

CSE351, Spring 2018L06: Floating Point

Summary

 Floating point approximates real numbers:

 Handles large numbers, small numbers, special numbers
 Exponent in biased notation (bias = 2w-1–1)

• Outside of representable exponents is overflow and underflow

 Mantissa approximates fractional portion of binary point
• Implicit leading 1 (normalized) except in special cases
• Exceeding length causes rounding

23

S E (8) M (23)
31 30 23 22 0

E M Meaning
0x00 0 ± 0
0x00 non-zero ± denorm num

0x01 – 0xFE anything ± norm num
0xFF 0 ± ∞
0xFF non-zero NaN

CSE351, Spring 2018L06: Floating Point

An example that applies the IEEE Floating Point
concepts to a smaller (8-bit) representation scheme.
These slides expand on material covered today, so
while you don’t need to read these, the information is
“fair game.”

24

CSE351, Spring 2018L06: Floating Point

Tiny Floating Point Example

 8-bit Floating Point Representation
 The sign bit is in the most significant bit (MSB)
 The next four bits are the exponent, with a bias of 24-1–1 = 7
 The last three bits are the mantissa

 Same general form as IEEE Format
 Normalized binary scientific point notation
 Similar special cases for 0, denormalized numbers, NaN, ∞

25

s exp man

1 4 3

CSE351, Spring 2018L06: Floating Point

Dynamic Range (Positive Only)

26

S E M Exp Value

0 0000 000 -6 0
0 0000 001 -6 1/8*1/64 = 1/512
0 0000 010 -6 2/8*1/64 = 2/512
…
0 0000 110 -6 6/8*1/64 = 6/512
0 0000 111 -6 7/8*1/64 = 7/512
0 0001 000 -6 8/8*1/64 = 8/512
0 0001 001 -6 9/8*1/64 = 9/512
…
0 0110 110 -1 14/8*1/2 = 14/16
0 0110 111 -1 15/8*1/2 = 15/16
0 0111 000 0 8/8*1 = 1
0 0111 001 0 9/8*1 = 9/8
0 0111 010 0 10/8*1 = 10/8
…
0 1110 110 7 14/8*128 = 224
0 1110 111 7 15/8*128 = 240
0 1111 000 n/a inf

closest to zero

largest denorm
smallest norm

closest to 1 below

closest to 1 above

largest norm

Denormalized
numbers

Normalized
numbers

CSE351, Spring 2018L06: Floating Point

Special Properties of Encoding
 Floating point zero (0+) exactly the same bits as integer zero
 All bits = 0

 Can (Almost) Use Unsigned Integer Comparison
 Must first compare sign bits
 Must consider 0- = 0+ = 0
 NaNs problematic

• Will be greater than any other values
• What should comparison yield?

 Otherwise OK
• Denorm vs. normalized
• Normalized vs. infinity

27

	Floating Point�CSE 351 Spring 2018
	Administrivia
	Unsigned Multiplication in C
	Multiplication with shift and add
	Number Representation Revisited
	Floating Point Topics
	Representation of Fractions
	Scientific Notation (Decimal)
	Scientific Notation (Binary)
	Scientific Notation Translation
	Floating Point Topics
	IEEE Floating Point
	Floating Point Encoding
	The Exponent Field
	The Mantissa (Fraction) Field
	Peer Instruction Question
	Precision and Accuracy
	Need More Precision and/or Range?
	Representing Very Small Numbers
	Denorm Numbers
	Other Special Cases
	Floating Point Encoding Summary
	Summary
	Slide Number 24
	Tiny Floating Point Example
	Dynamic Range (Positive Only)
	Special Properties of Encoding

