Floating Point
CSE 351 Spring 2018

http://xkcd.com/571/
Administrivia

- Lab 1 Prelim due Monday at 11:59pm
 - Only submit `bits.c`
- Lab 1 due next Friday
 - Submit `bits.c`, `pointer.c`, `lab1reflect.txt`
- Homework 2 released Monday, due Tuesday 4/17
 - On Integers, Floating Point, and x86-64
Unsigned Multiplication in C

Operands:

\[w \text{ bits} \]

True Product:

\[2w \text{ bits} \]

Discard \(w \) bits:

\[w \text{ bits} \]

- Standard Multiplication Function
 - Ignores high order \(w \) bits

- Implements Modular Arithmetic
 - \(\text{UMult}_w(u, v) = u \cdot v \mod 2^w \)
Multiplication with shift and add

- Operation \(u << k \) gives \(u \times 2^k \)
 - Both signed and unsigned

 Operands: \(w \) bits

 True Product: \(w + k \) bits

 Discard \(k \) bits: \(w \) bits

- **Examples:**
 - \(u << 3 \) == \(u \times 8 \)
 - \(u << 5 \) - \(u << 3 \) == \(u \times 24 \)

 - Most machines shift and add faster than multiply
 - *Compiler generates this code automatically*
Number Representation Revisited

- What can we represent in one word?
 - Signed and Unsigned Integers
 - Characters (ASCII)
 - Addresses

- How do we encode the following:
 - Real numbers (e.g. 3.14159)
 - Very large numbers (e.g. 6.02×10^{23})
 - Very small numbers (e.g. 6.626×10^{-34})
 - Special numbers (e.g. ∞, NaN)
Floating Point Topics

- Fractional binary numbers
- IEEE floating-point standard
- Floating-point operations and rounding
- Floating-point in C

There are many more details that we won’t cover

- It’s a 58-page standard (!)
- But there are essential gotchas you must know (since almost every language uses floating-point as defined by the standard)
Representation of Fractions

- “Binary Point,” like decimal point, signifies boundary between integer and fractional parts:

 Example 6-bit representation: \(xx \cdot yyyy \)

 \[
 \begin{array}{cccc}
 2^1 & 2^0 & 2^{-1} & 2^{-2} & 2^{-3} & 2^{-4} \\
 \hline
 x & x & . & y & y & y
 \end{array}
 \]

- Example: \(10.1010_2 = 1 \times 2^1 + 1 \times 2^{-1} + 1 \times 2^{-3} = 2.625_{10} \)

- Binary point numbers that match the 6-bit format above range from 0 (00.0000_2) to 3.9375 (11.1111_2)
Scientific Notation (Decimal)

- **Normalized form**: exactly one digit (non-zero) to left of decimal point

- **Alternatives to representing** 1/1,000,000,000
 - Normalized: 1.0×10^{-9}
 - Not normalized: $0.1 \times 10^{-8}, 10.0 \times 10^{-10}$
Scientific Notation (Binary)

- Computer arithmetic that supports this called **floating point** due to the “floating” of the binary point
 - Declare such variable in C as **float** (or **double**)
Scientific Notation Translation

- Convert from scientific notation to binary point
 - Perform the multiplication by shifting the decimal until the exponent disappears
 - Example: \(1.011_2 \times 2^4 = 10110_2 = 22_{10}\)
 - Example: \(1.011_2 \times 2^{-2} = 0.01011_2 = 0.34375_{10}\)

- Convert from binary point to *normalized* scientific notation
 - Adjust exponent so binary point is to the right of a single digit
 - Example: \(1101.001_2 = 1.101001_2 \times 2^3\)

- **Practice:** Convert \(11.375_{10}\) to binary scientific notation

- **Practice:** Convert \(1/5\) to binary
Floating Point Topics

- Fractional binary numbers
- **IEEE floating-point standard**
- Floating-point operations and rounding
- Floating-point in C

- There are many more details that we won’t cover
 - It’s a 58-page standard...
IEEE Floating Point

- IEEE 754
 - Established in 1985 as uniform standard for floating point arithmetic
 - Main idea: make numerically sensitive programs *portable*
 - Specifies two things: representation and result of floating operations
 - Now supported by all major CPUs

- Driven by numerical concerns
 - Scientists/numerical analysts want them to be as *real* as possible
 - Engineers want them to be *easy to implement* and *fast*
 - In the end:
 - Scientists mostly won out
 - *Portable* standards for *rounding*, overflow, underflow, but...
 - Hard to make fast in hardware
 - Float operations can be an order of magnitude slower than integer ops
Floating Point Encoding

- Use normalized, base 2 scientific notation:
 - Value: \(\pm 1 \times \text{Mantissa} \times 2^{\text{Exponent}} \)
 - Bit Fields: \((-1)^S \times 1.M \times 2^{(E-\text{bias})}\)

- Representation Scheme:
 - Sign bit (0 is positive, 1 is negative)
 - Mantissa (a.k.a. significand) is the fractional part of the number in normalized form and encoded in bit vector \(M\)
 - Exponent weights the value by a (possibly negative) power of 2 and encoded in the bit vector \(E\)
The Exponent Field

- Use **biased notation**
 - Read exponent as unsigned, but with *bias of* $2^{w-1} - 1 = 127$
 - Representable exponents roughly ½ positive and ½ negative
 - Exponent 0 ($\text{Exp} = 0$) is represented as $E = 0b\ 0111\ 1111$

- Why biased?
 - Makes floating point arithmetic easier
 - (It’s not two’s complement)

- **Practice:** To encode in biased notation, add the bias then encode in unsigned:
 - $\text{Exp} = 1 \rightarrow E = 0b$
 - $\text{Exp} = 127 \rightarrow E = 0b$
 - $\text{Exp} = -63 \rightarrow E = 0b$
The Mantissa (Fraction) Field

\((-1)^S \times (1 . M) \times 2^{(E-bias)}\)

- Note the implicit 1 in front of the M bit vector
 - Example: \(0b\ 0011\ 1111\ 1\ 100\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\) is read as \(1.1_2 = 1.5_{10}\), not \(0.1_2 = 0.5_{10}\)
 - Gives us an extra bit of precision

- Mantissa “limits”
 - Low values near \(M = 0b0...0\) are close to \(2^{\text{Exp}}\)
 - High values near \(M = 0b1...1\) are close to \(2^{\text{Exp}+1}\)
Peer Instruction Question

- What is the correct value encoded by the following floating point number?
 - 0b 0 10000000 11000000000000000000000

A. + 0.75
B. + 1.5
C. + 2.75
D. + 3.5
E. We’re lost...
Precision and Accuracy

- **Precision** is a count of the number of bits in a computer word used to represent a value
 - Capacity for accuracy
- **Accuracy** is a measure of the difference between the actual value of a number and its computer representation
 - *High precision permits high accuracy but doesn’t guarantee it. It is possible to have high precision but low accuracy.*
 - Example: `float pi = 3.14;`
 - `pi` will be represented using all 24 bits of the mantissa (highly precise), but is only an approximation (not accurate)
Need More Precision and/or Range?

- **Double Precision** (vs. Single Precision) in 64 bits

 - C/Java variable declared as `double`
 - Exponent bias is now $2^{10} - 1 = 1023$
 - **Advantages:**
 - greater precision (larger mantissa),
 - holds a 4-byte int without rounding
 - greater range (larger exponent)
 - **Disadvantages:**
 - more bits used,
 - slower to manipulate
Representing Very Small Numbers

- But wait... what happened to zero?
 - Using standard encoding 0x00000000 =
 - **Special case:** \(E \) and \(M \) all zeros = 0
 - Two zeros! But at least 0x00000000 = 0 like integers

- New numbers closest to 0:
 - \(a = 1.0\ldots0_2 \times 2^{-126} = 2^{-126} \)
 - \(b = 1.0\ldots01_2 \times 2^{-126} = 2^{-126} + 2^{-149} \)
 - Normalization and implicit 1 are to blame
 - **Special case:** \(E = 0, M \neq 0 \) are denormalized numbers
Denorm Numbers

- Denormalized numbers
 - No leading 1
 - Uses implicit exponent of -126 even though $E = 0x00$

- Denormalized numbers close the gap between zero and the smallest normalized number
 - Smallest norm: $\pm 1.0...0_{\text{two}} \times 2^{-126} = \pm 2^{-126}$
 - Smallest denorm: $\pm 0.0...0_{\text{two}}1 \times 2^{-126} = \pm 2^{-149}$
 - There is still a gap between zero and the smallest denormalized number
Other Special Cases

- E = 0xFF, M = 0: ± ∞
 - e.g. division by 0
 - Still work in comparisons!

- E = 0xFF, M ≠ 0: Not a Number (NaN)
 - e.g. square root of negative number, 0/0, ∞–∞
 - NaN propagates through computations

- New largest value (besides ∞)?
 - E = 0xFF has now been taken!
 - E = 0xFE has largest: \(1.1...1_2 \times 2^{127} = 2^{128} - 2^{104}\)
Floating Point Encoding Summary

<table>
<thead>
<tr>
<th>E</th>
<th>M</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00</td>
<td>0</td>
<td>± 0</td>
</tr>
<tr>
<td>0x00</td>
<td>non-zero</td>
<td>± denorm num</td>
</tr>
<tr>
<td>0x01 – 0xFE</td>
<td>anything</td>
<td>± norm num</td>
</tr>
<tr>
<td>0xFF</td>
<td>0</td>
<td>± ∞</td>
</tr>
<tr>
<td>0xFF</td>
<td>non-zero</td>
<td>NaN</td>
</tr>
</tbody>
</table>
Summary

- Floating point approximates real numbers:
 - Handles large numbers, small numbers, special numbers
 - Exponent in biased notation (bias = $2^{w-1}-1$)
 - Outside of representable exponents is overflow and underflow
 - Mantissa approximates fractional portion of binary point
 - Implicit leading 1 (normalized) except in special cases
 - Exceeding length causes rounding

<table>
<thead>
<tr>
<th>E</th>
<th>M</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00</td>
<td>0</td>
<td>± 0</td>
</tr>
<tr>
<td>0x00</td>
<td>non-zero</td>
<td>± denorm num</td>
</tr>
<tr>
<td>0x01 – 0xFE</td>
<td>anything</td>
<td>± norm num</td>
</tr>
<tr>
<td>0xFF</td>
<td>0</td>
<td>± ∞</td>
</tr>
<tr>
<td>0xFF</td>
<td>non-zero</td>
<td>NaN</td>
</tr>
</tbody>
</table>
An example that applies the IEEE Floating Point concepts to a smaller (8-bit) representation scheme. These slides expand on material covered today, so while you don’t need to read these, the information is “fair game.”
Tiny Floating Point Example

- **8-bit Floating Point Representation**
 - The sign bit is in the most significant bit (MSB)
 - The next four bits are the exponent, with a bias of $2^{4-1} - 1 = 7$
 - The last three bits are the mantissa

- **Same general form as IEEE Format**
 - Normalized binary scientific point notation
 - Similar special cases for 0, denormalized numbers, NaN, ∞
Dynamic Range (Positive Only)

<table>
<thead>
<tr>
<th>S</th>
<th>E</th>
<th>M</th>
<th>Exp</th>
<th>Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>000000 000</td>
<td>-6</td>
<td>0</td>
<td>0</td>
<td>closest to zero</td>
</tr>
<tr>
<td>0</td>
<td>000000 001</td>
<td>-6</td>
<td>1/8*1/64</td>
<td>1/512</td>
<td>largest denorm</td>
</tr>
<tr>
<td>0</td>
<td>000000 010</td>
<td>-6</td>
<td>2/8*1/64</td>
<td>2/512</td>
<td>smallest norm</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>000000 110</td>
<td>-6</td>
<td>6/8*1/64</td>
<td>6/512</td>
<td>closest to 1 below</td>
</tr>
<tr>
<td>0</td>
<td>000000 111</td>
<td>-6</td>
<td>7/8*1/64</td>
<td>7/512</td>
<td>closest to 1 above</td>
</tr>
<tr>
<td>0</td>
<td>00001 000</td>
<td>-6</td>
<td>8/8*1/64</td>
<td>8/512</td>
<td>largest norm</td>
</tr>
<tr>
<td>...</td>
<td>0110 110</td>
<td>-1</td>
<td>14/8*1/2</td>
<td>14/16</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>01111 000</td>
<td>0</td>
<td>8/8*1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>01111 001</td>
<td>0</td>
<td>9/8*1</td>
<td>9/8</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>01111 010</td>
<td>0</td>
<td>10/8*1</td>
<td>10/8</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>1110 110</td>
<td>7</td>
<td>14/8*128</td>
<td>224</td>
<td>largest norm</td>
</tr>
<tr>
<td>0</td>
<td>11110 111</td>
<td>7</td>
<td>15/8*128</td>
<td>240</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>11111 000</td>
<td>n/a</td>
<td>inf</td>
<td>inf</td>
<td></td>
</tr>
</tbody>
</table>
Special Properties of Encoding

- Floating point zero \((0^+)\) exactly the same bits as integer zero
 - All bits = 0

- Can (Almost) Use Unsigned Integer Comparison
 - Must first compare sign bits
 - Must consider \(0^- = 0^+ = 0\)
 - NaNs problematic
 - Will be greater than any other values
 - What should comparison yield?
 - Otherwise OK
 - Denorm vs. normalized
 - Normalized vs. infinity