
CSE351, Spring 2018L02: Memory & Data I

Memory, Data, & Addressing I
CSE 351 Spring 2018

http://xkcd.com/953/

http://xkcd.com/676/

CSE351, Spring 2018L02: Memory & Data I

Administrivia

 Pre-Course Survey due tonight
 Lab 0 due Monday
 Homework 1 due Monday

 All course materials can be found on the website
schedule

 Enrolling in CSE391 recommended (EEs included)

2

CSE351, Spring 2018L02: Memory & Data I

Roadmap

3

car *c = malloc(sizeof(car));
c->miles = 100;
c->gals = 17;
float mpg = get_mpg(c);
free(c);

Car c = new Car();
c.setMiles(100);
c.setGals(17);
float mpg =

c.getMPG();

get_mpg:
pushq %rbp
movq %rsp, %rbp
...
popq %rbp
ret

Java:C:

Assembly
language:

Machine
code:

0111010000011000
100011010000010000000010
1000100111000010
110000011111101000011111

Computer
system:

OS:

Memory & data
Integers & floats
x86 assembly
Procedures & stacks
Executables
Arrays & structs
Memory & caches
Processes
Virtual memory
Memory allocation
Java vs. C

CSE351, Spring 2018L02: Memory & Data I

Hardware: Logical View

4

CPU Memory

Disks Net USB Etc.

Bus

CSE351, Spring 2018L02: Memory & Data I

Hardware: Physical View

5

CPU
(empty slot)

USB…

I/O
controller

Storage connections
Memory

CSE351, Spring 2018L02: Memory & Data I

Hardware: 351 View (version 0)

 CPU executes instructions; memory stores data
 To execute an instruction, the CPU must:
 fetch an instruction;
 fetch the data used by the instruction; and, finally,
 execute the instruction on the data…
 which may result in writing data back to memory

6

Memory

CPU

?
data

instructions

CSE351, Spring 2018L02: Memory & Data I

Hardware: 351 View (version 1)

 The CPU holds instructions temporarily in the instruction cache
 The CPU holds data temporarily in a fixed number of registers
 Instruction and operand fetching is hardware-controlled
 Data movement is programmer-controlled (in assembly)
 We’ll learn about the instructions the CPU executes –

take CSE/EE470 to find out how it actually executes them 7

Memory

data

instructions

CPU

take 470…

registers

i-cache

this week…

CSE351, Spring 2018L02: Memory & Data I

Hardware: 351 View (version 1)

8

Memory

data

instructions

CPU

take 470…

registers

i-cache

this week…

 The CPU holds instructions temporarily in the instruction cache
 The CPU holds data temporarily in a fixed number of registers
 Instruction and operand fetching is hardware-controlled
 Data movement is programmer-controlled (in assembly)
 We’ll learn about the instructions the CPU executes –

take CSE/EE470 to find out how it actually executes them

How are data and
instructions
represented?

How does a program
find its data in
memory?

CSE351, Spring 2018L02: Memory & Data I

Question 1:

 Binary Encoding!

9

Memory

data

instructions

CPU

take 470…

registers

i-cache

this week…

How are data and
instructions
represented?

CSE351, Spring 2018L02: Memory & Data I

Question 1: Some Additional Details

 Because storage is finite in reality, everything is
stored as “fixed” length
 Data is moved and manipulated in fixed-length chunks
 Multiple fixed lengths (e.g. 1 byte, 4 bytes, 8 bytes)
 Leading zeros now must be included up to “fill out” the fixed

length

 Example: the “eight-bit” representation of the
number 4 is 0b00000100

10

Least Significant Bit (LSB)
Most Significant Bit (MSB)

CSE351, Spring 2018L02: Memory & Data I

Question 2:

11

Memory

data

instructions

CPU

take 470…

registers

i-cache

this week…

How does a program
find its data in
memory?

CSE351, Spring 2018L02: Memory & Data I

Byte-Oriented Memory Organization

 Conceptually, memory is a single, large array of bytes,
each with a unique address (index)
 The value of each byte in memory can be read and written

 Programs refer to bytes in memory by their addresses
 Domain of possible addresses = address space

 But not all values fit in a single byte… (e.g. 351)
 Many operations actually use multi-byte values

 We can store addresses as data to “remember” where other
data is in memory

12

• • •

We will repeat this
hundreds of times 

CSE351, Spring 2018L02: Memory & Data I

Peer Instruction Question

 If we choose to use 8-bit addresses, how big is our
address space?
 i.e. How much space can we “refer to” using our addresses?

A. 256 bits
B. 256 bytes
C. 8 bits
D. 8 bytes
E. We’re lost…

13

CSE351, Spring 2018L02: Memory & Data I

Machine “Words”

 Instructions encoded into machine code (0s and 1s)
 Historically (still true in some assembly languages), all

instructions were exactly the size of a word

 Word size bounds the size of the address space
 word size = address size = register size
 word size = 𝑤𝑤 bits → 2𝑤𝑤 addresses

 Current x86 systems use 64-bit (8-byte) words
 Potential address space: 𝟐𝟐𝟔𝟔𝟔𝟔 addresses

264 bytes ≈ 1.8 x 1019 bytes
= 18 billion billion bytes = 18 EB (exabytes)
 (But 1 computer doesn’t actually have that much memory)

14

CSE351, Spring 2018L02: Memory & Data I

Word-Oriented Memory Organization
 Addresses still specify

locations of bytes in memory
 Addresses of successive words

differ by word size (in bytes):
e.g. 4 (32-bit) or 8 (64-bit)

 Address of word 0, 1, … 10?

15

0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09
0x0A
0x0B

32-bit
Words

Bytes

0x0C
0x0D
0x0E
0x0F

64-bit
Words

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Address
(hex)

CSE351, Spring 2018L02: Memory & Data I

Word-Oriented Memory Organization
 Addresses still specify

locations of bytes in memory
 Addresses of successive words

differ by word size (in bytes):
e.g. 4 (32-bit) or 8 (64-bit)

 Address of word 0, 1, … 10?

 Address of word
= address of first byte in word
 The address of any chunk of

memory is given by the address
of the first byte

 Alignment

16

32-bit
Words

Bytes64-bit
Words

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

0000

0004

0008

0012

0000

0008

0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09
0x0A
0x0B
0x0C
0x0D
0x0E
0x0F

Addr.
(hex)

CSE351, Spring 2018L02: Memory & Data I

A Picture of Memory (64-bit view)

 A “64-bit (8-byte) word-aligned” view of memory:
 In this type of picture, each row is composed of 8 bytes
 Each cell is a byte
 A 64-bit pointer

will fit on one row

17

0x00
0x
0x
0x
0x
0x
0x
0x
0x
0x

0x04 0x05 0x06 0x070x00 0x01 0x02 0x03

one word

Address

CSE351, Spring 2018L02: Memory & Data I

A Picture of Memory (64-bit view)

 A “64-bit (8-byte) word-aligned” view of memory:
 In this type of picture, each row is composed of 8 bytes
 Each cell is a byte
 A 64-bit pointer

will fit on one row

18

0x00
0x08
0x10
0x18
0x20
0x28
0x30
0x38
0x40
0x48

Address

one word

0x04 0x05 0x06 0x070x00 0x01 0x02 0x03

0x0D 0x0E 0x0F0x0C0x09 0x0A 0x0B0x08

CSE351, Spring 2018L02: Memory & Data I

Addresses and Pointers

 An address is a location in memory
 A pointer is a data object that holds an address
 Address can point to any data

 Value 351 stored at
address 0x08
 35110 = 15F16

= 0x 00 ... 00 01 5F

 Pointer stored at
0x38 points to
address 0x08

19

0x00
0x08
0x10
0x18
0x20
0x28
0x30
0x38
0x40
0x48

Address

00 00 00 00 00 00 01 5F

00 00 00 00 00 00 00 08

64-bit example
(pointers are 64-bits wide)

big-endian

CSE351, Spring 2018L02: Memory & Data I

Addresses and Pointers

 An address is a location in memory
 A pointer is a data object that holds an address
 Address can point to any data

 Pointer stored at
0x48 points to
address 0x38
 Pointer to a pointer!

 Is the data stored
at 0x08 a pointer?
 Could be, depending

on how you use it
20

0x00
0x08
0x10
0x18
0x20
0x28
0x30
0x38
0x40
0x48

Address

00 00 00 00 00 00 01 5F

00 00 00 00 00 00 00 08

00 00 00 00 00 00 00 38

64-bit example
(pointers are 64-bits wide)

big-endian

CSE351, Spring 2018L02: Memory & Data I

Data Representations

 Sizes of data types (in bytes)

21To use “bool” in C, you must #include <stdbool.h>

Java Data Type C Data Type 32-bit (old) x86-64
boolean bool 1 1
byte char 1 1
char 2 2
short short int 2 2
int int 4 4
float float 4 4

long int 4 8
double double 8 8
long long 8 8

long double 8 16
(reference) pointer * 4 8(reference) pointer * 4 8

address size = word size

CSE351, Spring 2018L02: Memory & Data I

More on Memory Alignment in x86-64

 For good memory system performance, Intel
recommends data be aligned
 However the x86-64 hardware will work correctly regardless

of alignment of data
 Design choice: x86-64 instructions are variable bytes long

 Aligned: Primitive object of 𝐾𝐾 bytes must have an
address that is a multiple of 𝐾𝐾
 More about alignment later in the course

22

𝐾𝐾 Type
1 char
2 short
4 int, float
8 long, double, pointers

CSE351, Spring 2018L02: Memory & Data I

Byte Ordering

 How should bytes within a word be ordered in
memory?
 Example: store the 4-byte (32-bit) int:
0x a1 b2 c3 d4

 By convention, ordering of bytes called endianness
 The two options are big-endian and little-endian

• In which address does the least significant byte go?
• Based on Gulliver’s Travels: tribes cut eggs on different sides (big,

little)

23

CSE351, Spring 2018L02: Memory & Data I

Byte Ordering

 Big-endian (SPARC, z/Architecture)
 Least significant byte has highest address

 Little-endian (x86, x86-64)
 Least significant byte has lowest address

 Bi-endian (ARM, PowerPC)
 Endianness can be specified as big or little

 Example: 4-byte data 0xa1b2c3d4 at address 0x100

24

0x100 0x101 0x102 0x103

01 23 45 67

0x100 0x101 0x102 0x103

67 45 23 01

Big-Endian

Little-Endian

a1 b2 c3 d4

d4 c3 b2 a1

CSE351, Spring 2018L02: Memory & Data I

Byte Ordering Examples

25

Decimal: 12345
Binary: 0011 0000 0011 1001
Hex: 3 0 3 9

39
30
00
00

IA32, x86-64
(little-endian)

00
00
00
00

39
30
00
00

64-bit
x86-64

39
30
00
00

32-bit
IA32

30
39

00
00

SPARC
(big-endian)

30
39

00
00

32-bit
SPARC

30
39

00
00

64-bit
SPARC

00
00
00
00

int x = 12345;
// or x = 0x3039;

long int y = 12345;
// or y = 0x3039;

(A long int is
the size of a word)

0x00
0x01
0x02
0x03

0x00
0x01
0x02
0x03

0x00
0x01
0x02
0x03

0x00
0x01
0x02
0x03

0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07

0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07

CSE351, Spring 2018L02: Memory & Data I

Peer Instruction Question:

 We store the number 0x12345678 as a word at
address 0x100 in a big-endian, 64-bit machine

 What is the byte of data stored at address 0x104?

A. 0x12
B. 0x34
C. 0x56
D. 0x78
E. We’re lost…

26

CSE351, Spring 2018L02: Memory & Data I

Endianness

 Endianness only applies to memory storage
 Often programmer can ignore endianness because it

is handled for you
 Bytes wired into correct place when reading or storing from

memory (hardware)

 Compiler and assembler generate correct behavior (software)

 Endianness still shows up:
 Logical issues: accessing different amount of data than how

you stored it (e.g. store int, access byte as a char)
 Need to know exact values to debug memory errors
 Manual translation to and from machine code (in 351)

27

CSE351, Spring 2018L02: Memory & Data I

Summary

 Memory is a long, byte-addressed array
 Word size bounds the size of the address space and memory
 Different data types use different number of bytes
 Address of chunk of memory given by address of lowest byte

in chunk
 Object of 𝐾𝐾 bytes is aligned if it has an address that is a

multiple of 𝐾𝐾
 Pointers are data objects that hold addresses
 Endianness determines memory storage order for

multi-byte data

28

	Memory, Data, & Addressing I�CSE 351 Spring 2018
	Administrivia
	Roadmap
	Hardware: Logical View
	Hardware: Physical View
	Hardware: 351 View (version 0)
	Hardware: 351 View (version 1)
	Hardware: 351 View (version 1)
	Question 1:
	Question 1: Some Additional Details
	Question 2:
	Byte-Oriented Memory Organization
	Peer Instruction Question
	Machine “Words”
	Word-Oriented Memory Organization
	Word-Oriented Memory Organization
	A Picture of Memory (64-bit view)
	A Picture of Memory (64-bit view)
	Addresses and Pointers
	Addresses and Pointers
	Data Representations
	More on Memory Alignment in x86-64
	Byte Ordering
	Byte Ordering
	Byte Ordering Examples
	Peer Instruction Question:
	Endianness
	Summary

