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Welcome to CSE351!

+ See the key abstractions “under the hood” to

describe “what really happens” when a program runs
= How is it that “everything is 1s and 0s”?

= Where does all the data get stored and how do you find it?

®= How can more than one program run at once?

= What happens to a Java or C program before the hardware executes it?
= Why is recursion not even slightly magical?

= And much, much, much more...

« An introduction that will:

= Profoundly change/augment your view of computers and programs
= Connect your source code down to the hardware
= Leave you impressed that computers ever work
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Concise To-Do List

Review syllabus, course goals, collaboration policy, etc.:
http://courses.cs.washington.edu/courses/cse351/18sp/

Email-list settings, if necessary

Beginning-of-course survey due Wednesday

Lab O, due Monday, April 2

= Make sure you get our virtual machine set up and are able to do work
= Basic exercises to start getting familiar with C

= Get this done as quickly as possible

Homework 1, also due Monday April 2

Section Thursday

= Please install the virtual machine BEFORE coming to section

" Includes activities to help you with Lab 0 and Homework 1 —and more!
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Who: Course Staff

< Your Instructor:
= Excited to be teaching 351 for the 2"9 time!
" Compare: 341 10x, 331 3x, 332 2x ©

+ TAS:
" Available in section, office hours, via email, discussion board
" An invaluable source of information and help

+» Get to know us
= We are here to help you succeed!
" And enjoy helping you explore a new world
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Who are You?

« ~ 165 students

" Yikes — will do my very best to make it feel like 50
" You all belong here!

+» CSE majors, EE majors, and more

" Most of you will find almost everything in the course new

+» Get to know each other and help each other out!
" |Learning is much more fun with friends
= Working well with others is a valuable life skill
= Diversity of perspectives expands your horizons
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Staying in Touch

Course web page
= Schedule, policies, labs, homeworks, and everything else
Course discussion board
= Keep in touch outside of class — help each other
= Staff will monitor and contribute
Course mailing list cse351a_spl8@u.washington.edu
= Low traffic — mostly announcements; your @uw.edu is subscribed
Office hours, appointments, drop-ins
=  Will spread throughout the week
Staff e-mail (Dan + TAs): cse351-staff@cs.uw.edu
= For things that are not a good fit for the discussion board
Anonymous feedback

= Comments about anything related to the course where you would feel
better not attaching your name: goes only to Dan
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Textbooks

« Computer Systems: A Programmer’s Perspective
= Randal E. Bryant and David R. O’Hallaron oo
= Website: http://csapp.cs.cmu.edu

" Must be 3rd edition
« http://csapp.cs.cmu.edu/3e/changes3e.html

« http://csapp.cs.cmu.edu/3e/errata.html

" This book really matters for the course!
- How to solve labs

- Practice problems and homework

+» A good C book —any will do
= The C Programming Language (Kernighan and Ritchie)
= (C: A Reference Manual (Harbison and Steele) [Dan’s preference]


http://csapp.cs.cmu.edu/
http://csapp.cs.cmu.edu/3e/changes3e.html
http://csapp.cs.cmu.edu/3e/errata.html
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Course Components

Lectures

" |ntroduce the concepts; supplemented by textbook and videos

Sections

= Apply concepts, important tools and skills for labs, clarification of
lectures, exam review and preparation

Online homework assignments (5)

= Problems to solidify understanding; submitted as Canvas quizzes

Programming lab assignments (5.5)

= Provide in-depth understanding (via practice) of an aspect of system

Exams (2)
= Midterm: Friday, April 27 (in class)
= Final: Wednesday, June 6 2:30-4:20pm
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Collaboration and Academic Integrity

» All submissions are expected to be yours and yours alone

» You are encouraged to discuss your assignments with other
students (ideas), but we expect that what you turn in is yours

» Itis NOT acceptable to copy solutions from other students or

to copy (or start your) solutions from the Web (including
Github)

» Our goal is that *YOU™* |learn the material so you will be
prepared for exams, interviews, and the future

10
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More logistics stuff?

Questions before we get to course content??

11
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The Hardware/Software Interface

+» Why do we need a hardware/software interface?
+ Why do we need to understand both sides of this

interface?

import android.widget. Tmasatiian.

import android.widg”
import android.wid

1000001101111100001001000001110000000000 f ek

% Contains two si
*/

public class Cardf
private final G
private final C
private AlphafAn]

public Cardboart

params.setMar

leftView = ne
leftView. setle
addView(leftV

rightView = ne
rightView. setl
addView(right

// Set some rg
setDepthOffset
setColor(Colo

super (context,
setOrientatior ‘Our servers are humbled by your incredible
response,
Layu utParams i ‘We are working to resolve the issue. Please try
again soon!
LayoutParams

setVisibility

textFadeAnimat\\n\
textFadeAnimation:

11110111011111000010010000011100

CSE351, Spring 2018
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C/Java, assembly, and machine code

iIT X 1'=0) v = (y+tz2)/x;

Compiler

cmpl  $0, -4(%ebp)

je L2

movl -12(%ebp), %eax

movl -8(%ebp), %edx

leal (%edx,%eax), %eax

movl %eax, %edx

sarl  $31, %edx

idivl -4%ebp)

movl %eax, -8(%ebp)
L2:

Assembler

1000001101111100001001000001110000000000
0111010000011000
10001011010001000010010000010100
10001011010001100010010100010100
100011010000010000000010
1000100111000010
110000011111101000011111
11110111011111000010010000011100
10001001010001000010010000011000

High Level Language
(e.g. C, Java)

Assembly Language

Machine Code

14
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C/Java, assembly, and machine code

iIT X 1'=0) v = (y+tz2)/x;

l Compiler

cmpl  $0, -4(%ebp)

je L2

movl -12(%ebp), %eax
movl -8(%ebp), %edx
leal (%edx,%eax), %eax
movl %eax, %edx

sarl  $31, %edx

idivl -4%ebp)

movl %eax, -8(%ebp)

L2:
l Assembler

1000001101111100001001000001110000000000
0111010000011000
10001011010001000010010000010100
10001011010001100010010100010100
100011010000010000000010
1000100111000010
110000011111101000011111
11110111011111000010010000011100
10001001010001000010010000011000

« The 3 program fragments
are equivalent

« You’d rather write C!
(more human-friendly)

« Hardware executes strings
of bits

" |n reality everything is voltages

" The machine instructions are
actually much shorter than the
number of bits we would need
to represent the characters in
the assembly language

15
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HW/SW Interface: Historical Perspective

+» Hardware started out quite primitive

p——

Jean Jennings (left), Marlyn Wescoff (center), and Ruth Lichterman
program ENIAC at the University of Pennsylvania, circa 1946.
Photo: Corbis
http://fortune.com/2014/09/18/walter-isaacson-the-women-of-eniac/

https://s-media-cache-
ak0.pinimg.com/564x/91/37/23/91372375e2e6517f8af128aa

b655e3b4.jpg



http://fortune.com/2014/09/18/walter-isaacson-the-women-of-eniac/
https://s-media-cache-ak0.pinimg.com/564x/91/37/23/91372375e2e6517f8af128aab655e3b4.jpg
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HW/SW Interface: Historical Perspective

Hardware started out quite primitive

@,
0.0

" Programmed with very basic instructions (primitives)
" e.g.asingle instruction for adding two integers

Software was also very basic

@,
0.0

" Closely reflected the actual hardware it was running on
= Specify each step manually

Architecture Specification (Interface)

® |”

\

17
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HW/SW Interface: Assemblers

+ Life was made a lot better by assemblers

= 1 assembly instruction = 1 machine instruction
" More human-readable syntax

« Assembly instructions are character strings, not bit strings
= Can use symbolic names

- Assembler specification

User
program in
assembly

\\ language
G

Assembler Hardware

N
\

18
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HW/SW Interface: Higher-Level Languages

+ Higher level of abstraction

" 1 line of a high-level language is compiled into many
(sometimes very many) lines of assembly language

C language specification

User

program C Compiler Assembler Hardware
in C
\ e

19
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HW/SW Interface: Compiled Programs

Code Time Compile Time Run Time
© —
N N
User _
orogram| C Compiler Assembler Hardware
\ in C J J
¢ J
-Cfile .exe file

Note: The compiler and assembler are just programs, developed using this
same process.

20
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c->miles
c->gals

17;

100;

Roadmap
C: Java:
car *c =|malloc(sizeof(car)); [l Car c = new Car();

c.setMiles(100);
c.setGals(17);

CSE351, Spring 2018

Memory & data
Integers & floats
x86 assembly
Procedures & stacks

float mpg = get _mpg(c); float mpg = Executables
free(c); c-getMPG(); Arrays & structs
—_— ?‘ Memory & caches
Assembly get_mpg: Processes
. pushqg  %rbp :
language: mova . %rsp, %rbp Virtual memory
. Memory allocation
popq %rbp Javavs. C
ret *
Machine 0111010000011000 \/
de: 100011010000010000000010 /\ A
COde: 1000100111000010 A
110000011111101000011111 Windows 10 05 X osemie o=t
g [ |
A 4
Computer

system:

21
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Course Perspective

+» CSE351 will make you a better programmer
= Purpose is to show how software really works

- Understanding of some of the abstractions that exist between

programs and the hardware they run on, why they exist, and how
they build upon each other

= Understanding the underlying system makes you more effective
- Better debugging

- Better basis for evaluating performance

- How multiple activities work in concert (e.g. OS and user programs)
= “Stuff everybody learns and uses and forgets not knowing”

R/
0‘0

CSE351 presents a world-view that will empower you

= The intellectual and software tools to understand the trillions+ of 1s and
Os that are “flying around” when your program runs

22
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Writing Assembly Code??? In 2018???

+» Chances are, you’ll never write a whole program in assembly
= Compilers are much better and more patient than you are

+» But: understanding assembly is the key to the machine-level
execution model
= Behavior of programs in presence of bugs
« High-level language model breaks down
= Tuning program performance
- Understand optimizations done/not done by the compiler
- Understanding sources of program inefficiency
" Fighting malicious software

+ Also needed for:
" |mplementing key pieces of system software / embedded systems
= Using special units (timers, I/O co-processors, etc.) inside processor

23
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24
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Decimal Numbering System

« Tensymbols: 0,1, 2,3,4,5,6,7,8,9

+» Represent larger numbers as a sequence of digits

" Each digit is one of the available symbols

+» Example: 7061 in decimal (base 10)
" 7061,,=(7 X 10%) + (0 X 10?) + (6 X 10%) + (1 x 10°)

25
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Octal Numbering System

« Eight symbols: 0,1, 2,3,4,5,6, 7
= Notice that we no longer use 8 or 9
+» Base comparison:
" Base10: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12..
" Base8: o, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14..

+ Example: What is 7061, in base 10?
" 7061,=(7 x 8%+ (0 X 82) + (6 x 8') +(1x8%=3633,,

26
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Peer Instruction Question

+ What is 344 in base 107

34,,
710
. 28,

m o 0O W >

« Think on your own for a minute, then discuss with
your neighbor(s)

27
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Binary and Hexadecimal

+ Binary is base 2
= Symbols: 0,1
= Convention: 2,,=10,=0b10
+» Example: What is Ob110 in base 107?
= 0b110 =110, = (1 X 22)+ (1 X 2%) + (0 X 2°) = 6,4

+ Hexadecimal (hex, for short) is base 16
= Symbols? 0,1, 2,3,4,5,6,7,8,9,A,B,C,D, E, F
" Convention: 16,,=10,, = 0x10

+» Example: What is OxA5 in base 107
= OxA5 = A5, = (10 X 16%) + (5 X 16°) = 165,

CSE351, Spring 2018

28
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Converting to Base 10

«» Can convert from any base to base 10
= 0b110=110,=(1 X 22) + (1 x 2%) + (0 X 2°) = 6,,
= OxA5 = A5, = (10 X 16%) + (5 X 16°) = 165,

+» We learned to think in base 10, so this is fairly natural
for us

+ Challenge: Convert into other bases (e.g. 2, 16)

29
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Challenge Question

+ Convert 13, into binary

+ Hints:
= 23-§
m 024
= 1=9
= 20-1

« Think on your own for a minute, then discuss with
your neighbor(s)

30
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Converting from Decimal to Binary

« @Given a decimal number N:

= List increasing powers of 2 from right to left until = N

= Then from left to right, ask is that (power of 2) < N?

« If YES, put a 1 below and subtract that power from N
« If NO, put a 0 below and keep going

« Example: 13 to binary [24=16| 23=8 | 22=4 | 21=2 | 20=1

31
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Converting from Decimal to Base B

« @Given a decimal number N:

= List increasing powers of B from right to left until = N

" Then from left to right, ask is that (power of B) < N?

 If YES, put how many of that power go into N and subtract from N
« If NO, put a 0 below and keep going

+» Example: 165 to hex 162=256 | 161=16 | 16°=1

32
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Converting Binary < Hexadecimal

. Base 10 Base 2 Base 16
« Hex — Binar Base 10 Base 2 Base 16|
€ Y (%] 0000 (%]
= Substitute hex digits, then drop any 1 0001 1
leading zeros 2 0010 2
. 3 0011 3
[ .
Example: 0x2D to binary 1 0100 1
« Ox2is 0b0010, OxD is 0b1101 5 9101 5
- Drop two leading zeros, answer is 0b101101 6 0110 6
7 0111 7
_ 8 1000 8
+» Binary — Hex 9 1001 9
= Pad with leading zeros until multiple of ﬁ 1312 g‘
4 bits, then substitute each group of 4 B 1100 c
= Example: 0b101101 13 1101 D
- Pad to 0b 0010 1101 14 | 1110 E
15 1111 F

 Substitute to get 0x2D

33
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Binary — Hex Practice

+» Convert 0b100110110101101
" How many digits?
= Pad:
= Substitute:

CSE351, Spring 2018

Base 10 Base 2 Base 16

0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7/ 0111 7/
3 1000 3
9 1001 9
10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F

34
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Base Comparison

«» Why does all of this matter?

" Humans think about numbers in base
10, but computers “think” about
numbers in base 2

" Binary encoding is what allows
computers to do all of the amazing
things that they do!

« You should have this table
memorized by the end of the class

" Might as well start now!

CSE351, Spring 2018

Base 10 Base 2 Base 16

0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7/ 0111 7/
3 1000 3
9 1001 9
10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F

35
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Numerical Encoding

+» AMAZING FACT: You can represent anything
countable using numbers!

®= Need to agree on an encoding
= Kind of like learning a new language

+» Examples:
= Decimal Integers: 0—0b0, 1-0b1, 2—0b10, etc.
" English Letters: CSE—0x435345, yay—0x796179
. — ) ™
= Emoticons: © 0x0, ® 0x1, @ 0x2, {5 0x3, &) 0x4, (& 0x5

36
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Binary Encoding

«» With N binary digits, how many “things” can you
represent?

= Need N binary digits to represent n things, where 2N > n
= Example: 5 binary digits for alphabet because 2°> =32 > 26
= Example: < 300 binary digits for every atom in the universe

+ A binary digit is known as a bit
+ A group of 4 bits (1 hex digit) is called a nibble

« A group of 8 bits (2 hex digits) is called a byte
= 1 bit = 2 things, 1 nibble = 16 things, 1 byte = 256 things

37
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So What’s It Mean?

+ A sequence of bits can have many meanings!

% Consider the hex sequence Ox4E6F21

= Common interpretations include:
« The decimal number 5140257
« The characters “No!”
« The background color of this slide
 The fractional number 7.203034 x 103

% |t is up to the program/programmer to decide how to
the sequence of bits
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Binary Encoding — Colors

+ RGB — Red, Green, Blue
= Additive color model (light): byte (8 bits) for each color

= Commonly seen in hex (in HTML, photo editing, etc.)
—0xFFD700,

= Examples: Blue—=0x0000FF,
White—O0xFFFFFF, Deep Pink—0xFF1493

R essssssss—m" [ [213

el —CTT

Colors

Standard  Custom

Colors:

ul‘
v

Color model: |RGB

Red: 75 [E=
Green: 42 -

Blue: 133 =

CSE351, Spring 2018
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Binary Encoding — Characters/Text

+ ASCIlI Encoding (www.asciitable.com)

"= American Standard Code for Information Interchange

Dec Hxoct Char Dec Hx Oct Html CShr |Dec Hx Gt Himl Chr) Dec Hx Oct Himl Chr
0 0000 NUL (ruall) 32 20 040 &#32; Space| 64 40 100 «#64; B | 95 60 140 «#96;
1 1 00l 30H (start of heading) 33 21 041 &#33: ! 65 41 101 &«#65; 4 | 97 61 141 «#37; a
2 2 002 3Tx (start of text) 34 22 04z =#34; 7 65 42 102 «#66; B | 95 62 142 &#958; b
3 3 003 ETH (end of text) 35 23 043 =#35; # 67 43 103 «#67; C | 99 63 143 «#99; ©
4 4 004 E0OT (end of transwission) 36 24 044 &#36; § 65 44 104 &#658; D |100 &4 144 «#100; d
5 5 005 ENQ (encuiry) 37 25 045 =#37: % 69 45 105 «#69; E |101 65 145 «#l01; &
6 6 006 ACE (acknowledge) 38 26 045 &#35; = 70 46 106 &#70; F |102 66 146 &#102; €
7 7 007 BEL (bell) 39 27 047 =#39; ! 71 47 107 «#71: G [103 67 147 «#103; O
8 & 010 BS (backspace) 40 28 050 &#40; | 72 45 110 &#72; H |104 65 150 «#104: h
9 9 01l TAE (horizontal tah) 41 29 051 &#4l; ) 73 49 111 &#73; I |105 &9 151 &#l05; 1
10 & 0lZ LF (NL line feed, new line)| 42 24 052 &#42; ¥ 74 4h 112 &#74; T |106 64 152 &#l06; ]
11 B 013 VT (vertical tah) 43 2B 053 &#43; + 75 4F 113 &#75: K |107 6B 153 &#107: Kk
12 C 014 FF (NP form feed, new page)| 44 2C 054 &#4d: | 76 4AC 114 s#76: L |108 &C 154 &#l08: 1
13 D 015 CR (carriage returhn) 45 2D 055 &#45; - 77 4Dh 115 &#77: M 109 6D 155 &#l09; 0
14 E 0l 30 (shift out) 46 2E 056 #4677 . 78 4E 116 &#78: N |[110 6E 1556 &#110:; 0
15 F 017 3I (shift in) 47 2F 057 «#47: [ 79 4F 117 &#79: 0 |111 &F 157 &#111; o
16 10 020 DLE (data link eacape) 45 30 060 &«#45; 0 g0 50 120 &«#50: P |112 70 la0 &#l1Z; p
17 11 021 DC1 (device control 1) 49 31 06l «#49; 1 g1 51 121 &«#31: 0 [113 71 161 &#113; o
18 12 022 DCZ2 (dewice control 2) L0 32 062 &#50; 2 G2 52 12z &«#52: B |114 72 laz &#l14; ¢
19 13 023 DC3 (dewice control 3) £l 33 0635 &#51; 3 83 53 123 &«#53: 5 |115 73 la3 &#l15; =
20 14 024 DC4 [(dewice control 4) L2 34 064 &#52; 4 g4 54 124 «#54; T |116 74 lgd &#llo; ©
21 15 025 NAE (negatiwve acknowledge) 53 35 065 &#33; 5 85 55 1Z5 &#85; T |117 75 165 &#117: 1
22 16 D26 3YN (synchronous idle) 5d 36 066 #5476 g6 56 1Z6 &«#586; ¥V |118 76 le6 &#113; ¥
23 17 027 ETE (end of trans. block) 55 37 087 &#55: 7 87 87 127 &#587; W |119 77 167 &#119; W
24 15 030 CAN (cancel) S6 33 070 &#56; 0 83 53 130 &#583; X 120 73 170 &#120; X
25 19 031 EM  (end of medium) 57 39 071 &#57: 9 89 59 131 &«#589; T |121 79 171 &#121:; ¥
Z6 la 032 3UE (substitute) 58 3A 072 &#58; a0 B4 132 &#90; £ |1Z2 T4 172 &#122Z; 2
27 1B 033 E3C [escape) 59 3B 073 &#59; : 9]l B 133 &#91; [ |123 7B 173 &#123;
28 1C 034 F3 (file separator) 60 3C 074 &#60; < 92 5C 134 «#92; v (124 7C 174 &#lzZd;
29 1D 035 G3  (group separator) gl 3D 075 &«#6l: = 93 S0 135 &#93; ] |125 70 175 &#l25:; }
30 1E 036 R3  (record separator) 62 3E 076 &#6E; > 94 EE 136 &«#94; ~ |1Z6 7E 176 &«#li6; ~
31 1F 037 U%  [unit separator) 63 3F 077 &#63; 7 95 5F 137 &«#95; _ [l27 7F 177 &#127; DEL 40

Source: www . LookupTables .com


http://www.asciitable.com/
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Binary Encoding — Files and Programs

+ At the lowest level, all digital data is stored as bits!

+ Layers of abstraction keep everything comprehensible
= Data/files are groups of bits interpreted by program

" Program is actually groups of bits being interpreted by your
CPU

«» Computer Memory Demo (if time)
" From vim: %!xxd
" From emacs: M-x hexl-mode

41
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Summary

«» Humans think about numbers in decimal; computers
think about numbers in binary

" Base conversion to go between them
*" Hexadecimal is more human-readable than binary

« All information on a computer is binary

" For physical-world engineering reasons!

+» Binary encoding can represent anything!

= Computer/program needs to know how to interpret the bits
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