YW UNIVERSITY of WASHINGTON

LO1: Introduction, Binary

The Hardware/Software Interface

CSE 351 Spring 2018

Instructor:
Dan Grossman

Teaching Assistants:
Natalie Andreeva
Parker DeWilde
Ruta Dhaneshwar
Bryan Hanner

Britt Henderson
Travis McGaha

Eric Mullen

Sam Wolfson

AN x64 PROCESSDR, 16 SCREAMING ALONG AT BILLUONSOF
CYELES PER SECOND To RUN THE XNU KERNEL, WHICH IS
FRANTICALLY WORKING THROUGH ALL THE FOSIX-SPECIFED
ABSTRACTION T CREATE THE DRRUIN SYSTEM UNDERIYING
05 X, WHICH INTORN |S STRAINING ITSELF T RUN FIREF®
AND IT5 GECKO RENDERER, WHICH CREATES A RAGH (BTECT
WHICH RENDERS TDZENS OF VIDED FRAMES EVERY SELOND

O

BECAUSE I WANTED TO SEE A CAT
JUMP INTD A B0X AND FALL OVER.

I AMA GOD.

http://xkcd.com/676/

CSE351, Spring 2018

http://xkcd.com/676/

YW UNIVERSITY of WASHINGTON LO1: Introduction, Binary CSE351, Spring 2018

Welcome to CSE351!

+ See the key abstractions “under the hood” to

describe “what really happens” when a program runs
= How is it that “everything is 1s and 0s”?

= Where does all the data get stored and how do you find it?

®= How can more than one program run at once?

= What happens to a Java or C program before the hardware executes it?
= Why is recursion not even slightly magical?

= And much, much, much more...

« An introduction that will:

= Profoundly change/augment your view of computers and programs
= Connect your source code down to the hardware
= Leave you impressed that computers ever work

YW UNIVERSITY of WASHINGTON LO1: Introduction, Binary CSE351, Spring 2018

Concise To-Do List

Review syllabus, course goals, collaboration policy, etc.:
http://courses.cs.washington.edu/courses/cse351/18sp/

Email-list settings, if necessary

Beginning-of-course survey due Wednesday

Lab O, due Monday, April 2

= Make sure you get our virtual machine set up and are able to do work
= Basic exercises to start getting familiar with C

= Get this done as quickly as possible

Homework 1, also due Monday April 2

Section Thursday

= Please install the virtual machine BEFORE coming to section

" Includes activities to help you with Lab 0 and Homework 1 —and more!

YW UNIVERSITY of WASHINGTON LO1: Introduction, Binary CSE351, Spring 2018

Who: Course Staff

< Your Instructor:
= Excited to be teaching 351 for the 2"9 time!
" Compare: 341 10x, 331 3x, 332 2x ©

+ TAS:
" Available in section, office hours, via email, discussion board
" An invaluable source of information and help

+» Get to know us
= We are here to help you succeed!
" And enjoy helping you explore a new world

YW UNIVERSITY of WASHINGTON LO1: Introduction, Binary CSE351, Spring 2018

Acknowledgments

Many thanks to the many people whose course content
we are liberally reusing with at most minor changes

= UW: Gaetano Borriello, Luis Ceze, Peter Hornyack, Hal
Perkins, Ben Wood, John Zahorjan, Katelin Bailey, Ruth
Anderson, Justin Hsia, ...

"= CMU: Randy Bryant, David O’Halloran, Gregory Kesden,
Markus Plischel

" Harvard: Matt Welsh (now at Google-Seattle)
" Not listed: dozens of TAs

YW UNIVERSITY of WASHINGTON LO1: Introduction, Binary CSE351, Spring 2018

Who are You?

« ~ 165 students

" Yikes — will do my very best to make it feel like 50
" You all belong here!

+» CSE majors, EE majors, and more

" Most of you will find almost everything in the course new

+» Get to know each other and help each other out!
" |Learning is much more fun with friends
= Working well with others is a valuable life skill
= Diversity of perspectives expands your horizons

YW UNIVERSITY of WASHINGTON LO1: Introduction, Binary CSE351, Spring 2018

Staying in Touch

Course web page
= Schedule, policies, labs, homeworks, and everything else
Course discussion board
= Keep in touch outside of class — help each other
= Staff will monitor and contribute
Course mailing list cse351a_spl8@u.washington.edu
= Low traffic — mostly announcements; your @uw.edu is subscribed
Office hours, appointments, drop-ins
= Will spread throughout the week
Staff e-mail (Dan + TAs): cse351-staff@cs.uw.edu
= For things that are not a good fit for the discussion board
Anonymous feedback

= Comments about anything related to the course where you would feel
better not attaching your name: goes only to Dan

YW UNIVERSITY of WASHINGTON LO1: Introduction, Binary CSE351, Spring 2018

Textbooks

« Computer Systems: A Programmer’s Perspective
= Randal E. Bryant and David R. O’Hallaron oo
= Website: http://csapp.cs.cmu.edu

" Must be 3rd edition
« http://csapp.cs.cmu.edu/3e/changes3e.html

« http://csapp.cs.cmu.edu/3e/errata.html

" This book really matters for the course!
- How to solve labs

- Practice problems and homework

+» A good C book —any will do
= The C Programming Language (Kernighan and Ritchie)
= (C: A Reference Manual (Harbison and Steele) [Dan’s preference]

http://csapp.cs.cmu.edu/
http://csapp.cs.cmu.edu/3e/changes3e.html
http://csapp.cs.cmu.edu/3e/errata.html

YW UNIVERSITY of WASHINGTON LO1: Introduction, Binary CSE351, Spring 2018

Course Components

Lectures

" |ntroduce the concepts; supplemented by textbook and videos

Sections

= Apply concepts, important tools and skills for labs, clarification of
lectures, exam review and preparation

Online homework assignments (5)

= Problems to solidify understanding; submitted as Canvas quizzes

Programming lab assignments (5.5)

= Provide in-depth understanding (via practice) of an aspect of system

Exams (2)
= Midterm: Friday, April 27 (in class)
= Final: Wednesday, June 6 2:30-4:20pm

YW UNIVERSITY of WASHINGTON LO1: Introduction, Binary CSE351, Spring 2018

Collaboration and Academic Integrity

» All submissions are expected to be yours and yours alone

» You are encouraged to discuss your assignments with other
students (ideas), but we expect that what you turn in is yours

» Itis NOT acceptable to copy solutions from other students or

to copy (or start your) solutions from the Web (including
Github)

» Our goal is that *YOU™* |learn the material so you will be
prepared for exams, interviews, and the future

10

YW UNIVERSITY of WASHINGTON LO1: Introduction, Binary CSE351, Spring 2018

More logistics stuff?

Questions before we get to course content??

11

YA UNIVERSITY of WASHINGTON LO1: Introduction, Binary CSE351, Spring 2018

12

YA UNIVERSITY of WASHINGTON LO1: Introduction, Binary

The Hardware/Software Interface

+» Why do we need a hardware/software interface?
+ Why do we need to understand both sides of this

interface?

import android.widget. Tmasatiian.

import android.widg”
import android.wid

1000001101111100001001000001110000000000 f ek

% Contains two si
*/

public class Cardf
private final G
private final C
private AlphafAn]

public Cardboart

params.setMar

leftView = ne
leftView. setle
addView(leftV

rightView = ne
rightView. setl
addView(right

// Set some rg
setDepthOffset
setColor(Colo

super (context,
setOrientatior ‘Our servers are humbled by your incredible
response,
Layu utParams i ‘We are working to resolve the issue. Please try
again soon!
LayoutParams

setVisibility

textFadeAnimat\\n\
textFadeAnimation:

11110111011111000010010000011100

CSE351, Spring 2018

eSet attrs) {

ENT, 1.0f);

1 Irs);

trs);

YW UNIVERSITY of WASHINGTON LO1: Introduction, Binary CSE351, Spring 2018

C/Java, assembly, and machine code

iIT X 1'=0) v = (y+tz2)/x;

Compiler

cmpl $0, -4(%ebp)

je L2

movl -12(%ebp), %eax

movl -8(%ebp), %edx

leal (%edx,%eax), %eax

movl %eax, %edx

sarl $31, %edx

idivl -4%ebp)

movl %eax, -8(%ebp)
L2:

Assembler

1000001101111100001001000001110000000000
0111010000011000
10001011010001000010010000010100
10001011010001100010010100010100
100011010000010000000010
1000100111000010
110000011111101000011111
11110111011111000010010000011100
10001001010001000010010000011000

High Level Language
(e.g. C, Java)

Assembly Language

Machine Code

14

YW UNIVERSITY of WASHINGTON

LO1: Introduction, Binary

C/Java, assembly, and machine code

iIT X 1'=0) v = (y+tz2)/x;

l Compiler

cmpl $0, -4(%ebp)

je L2

movl -12(%ebp), %eax
movl -8(%ebp), %edx
leal (%edx,%eax), %eax
movl %eax, %edx

sarl $31, %edx

idivl -4%ebp)

movl %eax, -8(%ebp)

L2:
l Assembler

1000001101111100001001000001110000000000
0111010000011000
10001011010001000010010000010100
10001011010001100010010100010100
100011010000010000000010
1000100111000010
110000011111101000011111
11110111011111000010010000011100
10001001010001000010010000011000

« The 3 program fragments
are equivalent

« You’d rather write C!
(more human-friendly)

« Hardware executes strings
of bits

" |n reality everything is voltages

" The machine instructions are
actually much shorter than the
number of bits we would need
to represent the characters in
the assembly language

15

CSE351, Spring 2018

YA UNIVERSITY of WASHINGTON LO1: Introduction, Binary CSE351, Spring 2018

HW/SW Interface: Historical Perspective

+» Hardware started out quite primitive

p——

Jean Jennings (left), Marlyn Wescoff (center), and Ruth Lichterman
program ENIAC at the University of Pennsylvania, circa 1946.
Photo: Corbis
http://fortune.com/2014/09/18/walter-isaacson-the-women-of-eniac/

https://s-media-cache-
ak0.pinimg.com/564x/91/37/23/91372375e2e6517f8af128aa

b655e3b4.jpg

http://fortune.com/2014/09/18/walter-isaacson-the-women-of-eniac/
https://s-media-cache-ak0.pinimg.com/564x/91/37/23/91372375e2e6517f8af128aab655e3b4.jpg

YW UNIVERSITY of WASHINGTON LO1: Introduction, Binary CSE351, Spring 2018

HW/SW Interface: Historical Perspective

Hardware started out quite primitive

@,
0.0

" Programmed with very basic instructions (primitives)
" e.g.asingle instruction for adding two integers

Software was also very basic

@,
0.0

" Closely reflected the actual hardware it was running on
= Specify each step manually

Architecture Specification (Interface)

® |”

\

17

YW UNIVERSITY of WASHINGTON

LO1: Introduction, Binary

CSE351, Spring 2018

HW/SW Interface: Assemblers

+ Life was made a lot better by assemblers

= 1 assembly instruction = 1 machine instruction
" More human-readable syntax

« Assembly instructions are character strings, not bit strings
= Can use symbolic names

- Assembler specification

User
program in
assembly

\\ language
G

Assembler Hardware

N
\

18

YW UNIVERSITY of WASHINGTON LO1: Introduction, Binary CSE351, Spring 2018

HW/SW Interface: Higher-Level Languages

+ Higher level of abstraction

" 1 line of a high-level language is compiled into many
(sometimes very many) lines of assembly language

C language specification

User

program C Compiler Assembler Hardware
in C
\ e

19

YW UNIVERSITY of WASHINGTON LO1: Introduction, Binary CSE351, Spring 2018

HW/SW Interface: Compiled Programs

Code Time Compile Time Run Time
© —
N N
User _
orogram| C Compiler Assembler Hardware
\ in C J J
¢ J
-Cfile .exe file

Note: The compiler and assembler are just programs, developed using this
same process.

20

YA UNIVERSITY of WASHINGTON

LO1: Introduction, Binary

c->miles
c->gals

17;

100;

Roadmap
C: Java:
car *c =|malloc(sizeof(car)); [l Car c = new Car();

c.setMiles(100);
c.setGals(17);

CSE351, Spring 2018

Memory & data
Integers & floats
x86 assembly
Procedures & stacks

float mpg = get _mpg(c); float mpg = Executables
free(c); c-getMPG(); Arrays & structs
—_— ?‘ Memory & caches
Assembly get_mpg: Processes
. pushqg %rbp :
language: mova . %rsp, %rbp Virtual memory
. Memory allocation
popq %rbp Javavs. C
ret *
Machine 0111010000011000 \/
de: 100011010000010000000010 /\ A
COde: 1000100111000010 A
110000011111101000011111 Windows 10 05 X osemie o=t
g [|
A 4
Computer

system:

21

YW UNIVERSITY of WASHINGTON

LO1: Introduction, Binary

CSE351, Spring 2018

Course Perspective

+» CSE351 will make you a better programmer
= Purpose is to show how software really works

- Understanding of some of the abstractions that exist between

programs and the hardware they run on, why they exist, and how
they build upon each other

= Understanding the underlying system makes you more effective
- Better debugging

- Better basis for evaluating performance

- How multiple activities work in concert (e.g. OS and user programs)
= “Stuff everybody learns and uses and forgets not knowing”

R/
0‘0

CSE351 presents a world-view that will empower you

= The intellectual and software tools to understand the trillions+ of 1s and
Os that are “flying around” when your program runs

22

YW UNIVERSITY of WASHINGTON LO1: Introduction, Binary CSE351, Spring 2018

Writing Assembly Code??? In 2018???

+» Chances are, you’ll never write a whole program in assembly
= Compilers are much better and more patient than you are

+» But: understanding assembly is the key to the machine-level
execution model
= Behavior of programs in presence of bugs
« High-level language model breaks down
= Tuning program performance
- Understand optimizations done/not done by the compiler
- Understanding sources of program inefficiency
" Fighting malicious software

+ Also needed for:
" |mplementing key pieces of system software / embedded systems
= Using special units (timers, I/O co-processors, etc.) inside processor

23

YA UNIVERSITY of WASHINGTON LO1: Introduction, Binary CSE351, Spring 2018

24

YW UNIVERSITY of WASHINGTON LO1: Introduction, Binary CSE351, Spring 2018

Decimal Numbering System

« Tensymbols: 0,1, 2,3,4,5,6,7,8,9

+» Represent larger numbers as a sequence of digits

" Each digit is one of the available symbols

+» Example: 7061 in decimal (base 10)
" 7061,,=(7 X 10%) + (0 X 10?) + (6 X 10%) + (1 x 10°)

25

YW UNIVERSITY of WASHINGTON LO1: Introduction, Binary CSE351, Spring 2018

Octal Numbering System

« Eight symbols: 0,1, 2,3,4,5,6, 7
= Notice that we no longer use 8 or 9
+» Base comparison:
" Base10: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12..
" Base8: o, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14..

+ Example: What is 7061, in base 10?
" 7061,=(7 x 8%+ (0 X 82) + (6 x 8') +(1x8%=3633,,

26

YW UNIVERSITY of WASHINGTON LO1: Introduction, Binary CSE351, Spring 2018

Peer Instruction Question

+ What is 344 in base 107

34,,
710
. 28,

m o 0O W >

« Think on your own for a minute, then discuss with
your neighbor(s)

27

YW UNIVERSITY of WASHINGTON LO1: Introduction, Binary

Binary and Hexadecimal

+ Binary is base 2
= Symbols: 0,1
= Convention: 2,,=10,=0b10
+» Example: What is Ob110 in base 107?
= 0b110 =110, = (1 X 22)+ (1 X 2%) + (0 X 2°) = 6,4

+ Hexadecimal (hex, for short) is base 16
= Symbols? 0,1, 2,3,4,5,6,7,8,9,A,B,C,D, E, F
" Convention: 16,,=10,, = 0x10

+» Example: What is OxA5 in base 107
= OxA5 = A5, = (10 X 16%) + (5 X 16°) = 165,

CSE351, Spring 2018

28

YW UNIVERSITY of WASHINGTON LO1: Introduction, Binary CSE351, Spring 2018

Converting to Base 10

«» Can convert from any base to base 10
= 0b110=110,=(1 X 22) + (1 x 2%) + (0 X 2°) = 6,,
= OxA5 = A5, = (10 X 16%) + (5 X 16°) = 165,

+» We learned to think in base 10, so this is fairly natural
for us

+ Challenge: Convert into other bases (e.g. 2, 16)

29

YW UNIVERSITY of WASHINGTON LO1: Introduction, Binary CSE351, Spring 2018

Challenge Question

+ Convert 13, into binary

+ Hints:
= 23-§
m 024
= 1=9
= 20-1

« Think on your own for a minute, then discuss with
your neighbor(s)

30

YW UNIVERSITY of WASHINGTON LO1: Introduction, Binary CSE351, Spring 2018

Converting from Decimal to Binary

« @Given a decimal number N:

= List increasing powers of 2 from right to left until = N

= Then from left to right, ask is that (power of 2) < N?

« If YES, put a 1 below and subtract that power from N
« If NO, put a 0 below and keep going

« Example: 13 to binary [24=16| 23=8 | 22=4 | 21=2 | 20=1

31

YW UNIVERSITY of WASHINGTON LO1: Introduction, Binary CSE351, Spring 2018

Converting from Decimal to Base B

« @Given a decimal number N:

= List increasing powers of B from right to left until = N

" Then from left to right, ask is that (power of B) < N?

 If YES, put how many of that power go into N and subtract from N
« If NO, put a 0 below and keep going

+» Example: 165 to hex 162=256 | 161=16 | 16°=1

32

YW UNIVERSITY of WASHINGTON LO1: Introduction, Binary CSE351, Spring 2018

Converting Binary < Hexadecimal

. Base 10 Base 2 Base 16
« Hex — Binar Base 10 Base 2 Base 16|
€ Y (%] 0000 (%]
= Substitute hex digits, then drop any 1 0001 1
leading zeros 2 0010 2
. 3 0011 3
[.
Example: 0x2D to binary 1 0100 1
« Ox2is 0b0010, OxD is 0b1101 5 9101 5
- Drop two leading zeros, answer is 0b101101 6 0110 6
7 0111 7
_ 8 1000 8
+» Binary — Hex 9 1001 9
= Pad with leading zeros until multiple of ﬁ 1312 g‘
4 bits, then substitute each group of 4 B 1100 c
= Example: 0b101101 13 1101 D
- Pad to 0b 0010 1101 14 | 1110 E
15 1111 F

 Substitute to get 0x2D

33

YW UNIVERSITY of WASHINGTON LO1: Introduction, Binary

Binary — Hex Practice

+» Convert 0b100110110101101
" How many digits?
= Pad:
= Substitute:

CSE351, Spring 2018

Base 10 Base 2 Base 16

0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7/ 0111 7/
3 1000 3
9 1001 9
10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F

34

YW UNIVERSITY of WASHINGTON LO1: Introduction, Binary

Base Comparison

«» Why does all of this matter?

" Humans think about numbers in base
10, but computers “think” about
numbers in base 2

" Binary encoding is what allows
computers to do all of the amazing
things that they do!

« You should have this table
memorized by the end of the class

" Might as well start now!

CSE351, Spring 2018

Base 10 Base 2 Base 16

0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7/ 0111 7/
3 1000 3
9 1001 9
10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F

35

YW UNIVERSITY of WASHINGTON LO1: Introduction, Binary CSE351, Spring 2018

Numerical Encoding

+» AMAZING FACT: You can represent anything
countable using numbers!

®= Need to agree on an encoding
= Kind of like learning a new language

+» Examples:
= Decimal Integers: 0—0b0, 1-0b1, 2—0b10, etc.
" English Letters: CSE—0x435345, yay—0x796179
. —) ™
= Emoticons: © 0x0, ® 0x1, @ 0x2, {5 0x3, &) 0x4, (& 0x5

36

YW UNIVERSITY of WASHINGTON LO1: Introduction, Binary

CSE351, Spring 2018

Binary Encoding

«» With N binary digits, how many “things” can you
represent?

= Need N binary digits to represent n things, where 2N > n
= Example: 5 binary digits for alphabet because 2°> =32 > 26
= Example: < 300 binary digits for every atom in the universe

+ A binary digit is known as a bit
+ A group of 4 bits (1 hex digit) is called a nibble

« A group of 8 bits (2 hex digits) is called a byte
= 1 bit = 2 things, 1 nibble = 16 things, 1 byte = 256 things

37

YA UNIVERSITY of WASHINGTON LO1: Introduction, Binary CSE351, Spring 2018

So What’s It Mean?

+ A sequence of bits can have many meanings!

% Consider the hex sequence Ox4E6F21

= Common interpretations include:
« The decimal number 5140257
« The characters “No!”
« The background color of this slide
 The fractional number 7.203034 x 103

% |t is up to the program/programmer to decide how to
the sequence of bits

YA UNIVERSITY of WASHINGTON

LO1: Introduction, Binary

Binary Encoding — Colors

+ RGB — Red, Green, Blue
= Additive color model (light): byte (8 bits) for each color

= Commonly seen in hex (in HTML, photo editing, etc.)
—0xFFD700,

= Examples: Blue—=0x0000FF,
White—O0xFFFFFF, Deep Pink—0xFF1493

R essssssss—m" [[213

el —CTT

Colors

Standard Custom

Colors:

ul‘
v

Color model: |RGB

Red: 75 [E=
Green: 42 -

Blue: 133 =

CSE351, Spring 2018

YW UNIVERSITY of WASHINGTON LO1: Introduction, Binary CSE351, Spring 2018

Binary Encoding — Characters/Text

+ ASCIlI Encoding (www.asciitable.com)

"= American Standard Code for Information Interchange

Dec Hxoct Char Dec Hx Oct Html CShr |Dec Hx Gt Himl Chr) Dec Hx Oct Himl Chr
0 0000 NUL (ruall) 32 20 040 Space| 64 40 100 «#64; B | 95 60 140 «#96;
1 1 00l 30H (start of heading) 33 21 041 !: ! 65 41 101 &«#65; 4 | 97 61 141 «#37; a
2 2 002 3Tx (start of text) 34 22 04z =#34; 7 65 42 102 «#66; B | 95 62 142 ξ b
3 3 003 ETH (end of text) 35 23 043 =#35; # 67 43 103 «#67; C | 99 63 143 «#99; ©
4 4 004 E0OT (end of transwission) 36 24 044 $ § 65 44 104 ʒ D |100 &4 144 «#100; d
5 5 005 ENQ (encuiry) 37 25 045 =#37: % 69 45 105 «#69; E |101 65 145 «#l01; &
6 6 006 ACE (acknowledge) 38 26 045 # = 70 46 106 F F |102 66 146 f €
7 7 007 BEL (bell) 39 27 047 =#39; ! 71 47 107 «#71: G [103 67 147 «#103; O
8 & 010 BS (backspace) 40 28 050 (| 72 45 110 H H |104 65 150 «#104: h
9 9 01l TAE (horizontal tah) 41 29 051 l;) 73 49 111 I I |105 &9 151 &#l05; 1
10 & 0lZ LF (NL line feed, new line)| 42 24 052 * ¥ 74 4h 112 J T |106 64 152 &#l06;]
11 B 013 VT (vertical tah) 43 2B 053 + + 75 4F 113 K: K |107 6B 153 k: Kk
12 C 014 FF (NP form feed, new page)| 44 2C 054 d: | 76 4AC 114 s#76: L |108 &C 154 &#l08: 1
13 D 015 CR (carriage returhn) 45 2D 055 - - 77 4Dh 115 M: M 109 6D 155 &#l09; 0
14 E 0l 30 (shift out) 46 2E 056 #4677 . 78 4E 116 N: N |[110 6E 1556 n:; 0
15 F 017 3I (shift in) 47 2F 057 «#47: [79 4F 117 O: 0 |111 &F 157 o o
16 10 020 DLE (data link eacape) 45 30 060 &«#45; 0 g0 50 120 &«#50: P |112 70 la0 &#l1Z; p
17 11 021 DC1 (device control 1) 49 31 06l «#49; 1 g1 51 121 &«#31: 0 [113 71 161 q o
18 12 022 DCZ2 (dewice control 2) L0 32 062 2 2 G2 52 12z &«#52: B |114 72 laz &#l14; ¢
19 13 023 DC3 (dewice control 3) £l 33 0635 3 3 83 53 123 &«#53: 5 |115 73 la3 &#l15; =
20 14 024 DC4 [(dewice control 4) L2 34 064 4 4 g4 54 124 «#54; T |116 74 lgd &#llo; ©
21 15 025 NAE (negatiwve acknowledge) 53 35 065 ! 5 85 55 1Z5 U T |117 75 165 u: 1
22 16 D26 3YN (synchronous idle) 5d 36 066 #5476 g6 56 1Z6 &«#586; ¥V |118 76 le6 q ¥
23 17 027 ETE (end of trans. block) 55 37 087 7: 7 87 87 127 ɋ W |119 77 167 w W
24 15 030 CAN (cancel) S6 33 070 8 0 83 53 130 ɇ X 120 73 170 x X
25 19 031 EM (end of medium) 57 39 071 9: 9 89 59 131 &«#589; T |121 79 171 y:; ¥
Z6 la 032 3UE (substitute) 58 3A 072 : a0 B4 132 Z £ |1Z2 T4 172 zZ; 2
27 1B 033 E3C [escape) 59 3B 073 ; : 9]l B 133 [[|123 7B 173 {
28 1C 034 F3 (file separator) 60 3C 074 < < 92 5C 134 «#92; v (124 7C 174 &#lzZd;
29 1D 035 G3 (group separator) gl 3D 075 &«#6l: = 93 S0 135]] |125 70 175 &#l25:; }
30 1E 036 R3 (record separator) 62 3E 076 E; > 94 EE 136 &«#94; ~ |1Z6 7E 176 &«#li6; ~
31 1F 037 U% [unit separator) 63 3F 077 ? 7 95 5F 137 &«#95; _ [l27 7F 177 DEL 40

Source: www . LookupTables .com

http://www.asciitable.com/

YW UNIVERSITY of WASHINGTON LO1: Introduction, Binary CSE351, Spring 2018

Binary Encoding — Files and Programs

+ At the lowest level, all digital data is stored as bits!

+ Layers of abstraction keep everything comprehensible
= Data/files are groups of bits interpreted by program

" Program is actually groups of bits being interpreted by your
CPU

«» Computer Memory Demo (if time)
" From vim: %!xxd
" From emacs: M-x hexl-mode

41

YW UNIVERSITY of WASHINGTON LO1: Introduction, Binary CSE351, Spring 2018

Summary

«» Humans think about numbers in decimal; computers
think about numbers in binary

" Base conversion to go between them
*" Hexadecimal is more human-readable than binary

« All information on a computer is binary

" For physical-world engineering reasons!

+» Binary encoding can represent anything!

= Computer/program needs to know how to interpret the bits

42

	The Hardware/Software Interface�CSE 351 Spring 2018
	Welcome to CSE351!
	Concise To-Do List
	Who: Course Staff
	Acknowledgments
	Who are You?
	Staying in Touch
	Textbooks
	Course Components
	Collaboration and Academic Integrity
	More logistics stuff?
	Slide Number 12
	The Hardware/Software Interface
	C/Java, assembly, and machine code
	C/Java, assembly, and machine code
	HW/SW Interface: Historical Perspective
	HW/SW Interface: Historical Perspective
	HW/SW Interface: Assemblers
	HW/SW Interface: Higher-Level Languages
	HW/SW Interface: Compiled Programs
	Roadmap
	Course Perspective
	Writing Assembly Code??? In 2018???
	Slide Number 24
	Decimal Numbering System
	Octal Numbering System
	Peer Instruction Question
	Binary and Hexadecimal
	Converting to Base 10
	Challenge Question
	Converting from Decimal to Binary
	Converting from Decimal to Base B
	Converting Binary ↔ Hexadecimal
	Binary → Hex Practice
	Base Comparison
	Numerical Encoding
	Binary Encoding
	So What’s It Mean?
	Binary Encoding – Colors
	Binary Encoding – Characters/Text
	Binary Encoding – Files and Programs
	Summary

