
CSE351, Spring 2018L01: Introduction, Binary

The Hardware/Software Interface
CSE 351 Spring 2018

Instructor:
Dan Grossman

Teaching Assistants:
Natalie Andreeva
Parker DeWilde
Ruta Dhaneshwar
Bryan Hanner
Britt Henderson
Travis McGaha
Eric Mullen
Sam Wolfson

http://xkcd.com/676/

http://xkcd.com/676/

CSE351, Spring 2018L01: Introduction, Binary

Welcome to CSE351!

 See the key abstractions “under the hood” to
describe “what really happens” when a program runs
 How is it that “everything is 1s and 0s”?
 Where does all the data get stored and how do you find it?
 How can more than one program run at once?
 What happens to a Java or C program before the hardware executes it?
 Why is recursion not even slightly magical?
 And much, much, much more…

 An introduction that will:
 Profoundly change/augment your view of computers and programs
 Connect your source code down to the hardware
 Leave you impressed that computers ever work

2

CSE351, Spring 2018L01: Introduction, Binary

Concise To-Do List
 Review syllabus, course goals, collaboration policy, etc.:

http://courses.cs.washington.edu/courses/cse351/18sp/
 Email-list settings, if necessary
 Beginning-of-course survey due Wednesday
 Lab 0, due Monday, April 2
 Make sure you get our virtual machine set up and are able to do work
 Basic exercises to start getting familiar with C
 Get this done as quickly as possible

 Homework 1, also due Monday April 2
 Section Thursday
 Please install the virtual machine BEFORE coming to section
 Includes activities to help you with Lab 0 and Homework 1 – and more!

3

CSE351, Spring 2018L01: Introduction, Binary

Who: Course Staff

 Your Instructor:
 Excited to be teaching 351 for the 2nd time!
 Compare: 341 10x, 331 3x, 332 2x

 TAs:
 Available in section, office hours, via email, discussion board
 An invaluable source of information and help

 Get to know us
 We are here to help you succeed!
 And enjoy helping you explore a new world

4

CSE351, Spring 2018L01: Introduction, Binary

Acknowledgments

Many thanks to the many people whose course content
we are liberally reusing with at most minor changes
 UW: Gaetano Borriello, Luis Ceze, Peter Hornyack, Hal

Perkins, Ben Wood, John Zahorjan, Katelin Bailey, Ruth
Anderson, Justin Hsia, …
 CMU: Randy Bryant, David O’Halloran, Gregory Kesden,

Markus Püschel
 Harvard: Matt Welsh (now at Google-Seattle)
 Not listed: dozens of TAs

5

CSE351, Spring 2018L01: Introduction, Binary

Who are You?

 ~ 165 students
 Yikes – will do my very best to make it feel like 50
 You all belong here!

 CSE majors, EE majors, and more
 Most of you will find almost everything in the course new

 Get to know each other and help each other out!
 Learning is much more fun with friends
 Working well with others is a valuable life skill
 Diversity of perspectives expands your horizons

6

CSE351, Spring 2018L01: Introduction, Binary

Staying in Touch
 Course web page
 Schedule, policies, labs, homeworks, and everything else

 Course discussion board
 Keep in touch outside of class – help each other
 Staff will monitor and contribute

 Course mailing list cse351a_sp18@u.washington.edu
 Low traffic – mostly announcements; your @uw.edu is subscribed

 Office hours, appointments, drop-ins
 Will spread throughout the week

 Staff e-mail (Dan + TAs): cse351-staff@cs.uw.edu
 For things that are not a good fit for the discussion board

 Anonymous feedback
 Comments about anything related to the course where you would feel

better not attaching your name: goes only to Dan

7

CSE351, Spring 2018L01: Introduction, Binary

Textbooks

 Computer Systems: A Programmer’s Perspective
 Randal E. Bryant and David R. O’Hallaron
 Website: http://csapp.cs.cmu.edu
 Must be 3rd edition

• http://csapp.cs.cmu.edu/3e/changes3e.html
• http://csapp.cs.cmu.edu/3e/errata.html

 This book really matters for the course!
• How to solve labs
• Practice problems and homework

 A good C book – any will do
 The C Programming Language (Kernighan and Ritchie)
 C: A Reference Manual (Harbison and Steele) [Dan’s preference]

8

http://csapp.cs.cmu.edu/
http://csapp.cs.cmu.edu/3e/changes3e.html
http://csapp.cs.cmu.edu/3e/errata.html

CSE351, Spring 2018L01: Introduction, Binary

Course Components

 Lectures
 Introduce the concepts; supplemented by textbook and videos

 Sections
 Apply concepts, important tools and skills for labs, clarification of

lectures, exam review and preparation

 Online homework assignments (5)
 Problems to solidify understanding; submitted as Canvas quizzes

 Programming lab assignments (5.5)
 Provide in-depth understanding (via practice) of an aspect of system

 Exams (2)
 Midterm: Friday, April 27 (in class)
 Final: Wednesday, June 6 2:30-4:20pm

9

CSE351, Spring 2018L01: Introduction, Binary

Collaboration and Academic Integrity

 All submissions are expected to be yours and yours alone

 You are encouraged to discuss your assignments with other
students (ideas), but we expect that what you turn in is yours

 It is NOT acceptable to copy solutions from other students or
to copy (or start your) solutions from the Web (including
Github)

 Our goal is that *YOU* learn the material so you will be
prepared for exams, interviews, and the future

10

CSE351, Spring 2018L01: Introduction, Binary

More logistics stuff?

Questions before we get to course content??

11

CSE351, Spring 2018L01: Introduction, Binary

12

CSE351, Spring 2018L01: Introduction, Binary

1000001101111100001001000001110000000000
0111010000011000
10001011010001000010010000010100
10001011010001100010010100010100
100011010000010000000010
1000100111000010
110000011111101000011111
11110111011111000010010000011100
10001001010001000010010000011000

1000001101111100001001000001110000000000
0111010000011000
10001011010001000010010000010100
10001011010001100010010100010100
100011010000010000000010
1000100111000010
110000011111101000011111
11110111011111000010010000011100

The Hardware/Software Interface

 Why do we need a hardware/software interface?
 Why do we need to understand both sides of this

interface?

CSE351, Spring 2018L01: Introduction, Binary

C/Java, assembly, and machine code
High Level Language
(e.g. C, Java)

Assembly Language

Machine Code

14

if (x != 0) y = (y+z)/x;

cmpl $0, -4(%ebp)
je .L2
movl -12(%ebp), %eax
movl -8(%ebp), %edx
leal (%edx,%eax), %eax
movl %eax, %edx
sarl $31, %edx
idivl -4(%ebp)
movl %eax, -8(%ebp)

.L2:

1000001101111100001001000001110000000000
0111010000011000
10001011010001000010010000010100
10001011010001100010010100010100
100011010000010000000010
1000100111000010
110000011111101000011111
11110111011111000010010000011100
10001001010001000010010000011000

Compiler

Assembler

CSE351, Spring 2018L01: Introduction, Binary

C/Java, assembly, and machine code
 The 3 program fragments

are equivalent
 You’d rather write C!

(more human-friendly)
 Hardware executes strings

of bits
 In reality everything is voltages
 The machine instructions are

actually much shorter than the
number of bits we would need
to represent the characters in
the assembly language

15

1000001101111100001001000001110000000000
0111010000011000
10001011010001000010010000010100
10001011010001100010010100010100
100011010000010000000010
1000100111000010
110000011111101000011111
11110111011111000010010000011100
10001001010001000010010000011000

Compiler

Assembler

if (x != 0) y = (y+z)/x;

cmpl $0, -4(%ebp)
je .L2
movl -12(%ebp), %eax
movl -8(%ebp), %edx
leal (%edx,%eax), %eax
movl %eax, %edx
sarl $31, %edx
idivl -4(%ebp)
movl %eax, -8(%ebp)

.L2:

CSE351, Spring 2018L01: Introduction, Binary

HW/SW Interface: Historical Perspective

 Hardware started out quite primitive

16

Jean Jennings (left), Marlyn Wescoff (center), and Ruth Lichterman
program ENIAC at the University of Pennsylvania, circa 1946.
Photo: Corbis
http://fortune.com/2014/09/18/walter-isaacson-the-women-of-eniac/

https://s-media-cache-
ak0.pinimg.com/564x/91/37/23/91372375e2e6517f8af128aa
b655e3b4.jpg

1940s

1970s

http://fortune.com/2014/09/18/walter-isaacson-the-women-of-eniac/
https://s-media-cache-ak0.pinimg.com/564x/91/37/23/91372375e2e6517f8af128aab655e3b4.jpg

CSE351, Spring 2018L01: Introduction, Binary

HW/SW Interface: Historical Perspective

 Hardware started out quite primitive
 Programmed with very basic instructions (primitives)
 e.g. a single instruction for adding two integers

 Software was also very basic
 Closely reflected the actual hardware it was running on
 Specify each step manually

17

Architecture Specification (Interface)

Hardware

CSE351, Spring 2018L01: Introduction, Binary

HW/SW Interface: Assemblers

 Life was made a lot better by assemblers
 1 assembly instruction = 1 machine instruction
 More human-readable syntax

• Assembly instructions are character strings, not bit strings

 Can use symbolic names

18

Hardware

Assembler specification

Assembler
User

program in
assembly
language

CSE351, Spring 2018L01: Introduction, Binary

HW/SW Interface: Higher-Level Languages

 Higher level of abstraction
 1 line of a high-level language is compiled into many

(sometimes very many) lines of assembly language

19

Hardware

C language specification

AssemblerC Compiler
User

program
in C

CSE351, Spring 2018L01: Introduction, Binary

HW/SW Interface: Compiled Programs

20

HardwareAssemblerC Compiler

Code Time Compile Time Run Time

Note: The compiler and assembler are just programs, developed using this
same process.

.exe file.c file

User
program

in C

CSE351, Spring 2018L01: Introduction, Binary

Roadmap

21

car *c = malloc(sizeof(car));
c->miles = 100;
c->gals = 17;
float mpg = get_mpg(c);
free(c);

Car c = new Car();
c.setMiles(100);
c.setGals(17);
float mpg =

c.getMPG();

get_mpg:
pushq %rbp
movq %rsp, %rbp
...
popq %rbp
ret

Java:C:

Assembly
language:

Machine
code:

0111010000011000
100011010000010000000010
1000100111000010
110000011111101000011111

Computer
system:

OS:

Memory & data
Integers & floats
x86 assembly
Procedures & stacks
Executables
Arrays & structs
Memory & caches
Processes
Virtual memory
Memory allocation
Java vs. C

CSE351, Spring 2018L01: Introduction, Binary

Course Perspective

 CSE351 will make you a better programmer
 Purpose is to show how software really works

• Understanding of some of the abstractions that exist between
programs and the hardware they run on, why they exist, and how
they build upon each other

 Understanding the underlying system makes you more effective
• Better debugging
• Better basis for evaluating performance
• How multiple activities work in concert (e.g. OS and user programs)

 “Stuff everybody learns and uses and forgets not knowing”

 CSE351 presents a world-view that will empower you
 The intellectual and software tools to understand the trillions+ of 1s and

0s that are “flying around” when your program runs
22

CSE351, Spring 2018L01: Introduction, Binary

Writing Assembly Code??? In 2018???
 Chances are, you’ll never write a whole program in assembly
 Compilers are much better and more patient than you are

 But: understanding assembly is the key to the machine-level
execution model
 Behavior of programs in presence of bugs

• High-level language model breaks down
 Tuning program performance

• Understand optimizations done/not done by the compiler
• Understanding sources of program inefficiency

 Fighting malicious software

 Also needed for:
 Implementing key pieces of system software / embedded systems
 Using special units (timers, I/O co-processors, etc.) inside processor

23

CSE351, Spring 2018L01: Introduction, Binary

24

CSE351, Spring 2018L01: Introduction, Binary

Decimal Numbering System

 Ten symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

 Represent larger numbers as a sequence of digits
 Each digit is one of the available symbols

 Example: 7061 in decimal (base 10)
 706110 = (7 × 103) + (0 × 102) + (6 × 101) + (1 × 100)

25

CSE351, Spring 2018L01: Introduction, Binary

Octal Numbering System

 Eight symbols: 0, 1, 2, 3, 4, 5, 6, 7
 Notice that we no longer use 8 or 9

 Base comparison:
 Base 10: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12…

 Base 8: 0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14…

 Example: What is 70618 in base 10?
 70618 = (7 × 83) + (0 × 82) + (6 × 81) + (1 × 80) = 363310

26

CSE351, Spring 2018L01: Introduction, Binary

Peer Instruction Question

 What is 348 in base 10?

A. 3210

B. 3410

C. 710

D. 2810

E. 3510

 Think on your own for a minute, then discuss with
your neighbor(s)

27

CSE351, Spring 2018L01: Introduction, Binary

Binary and Hexadecimal

 Binary is base 2
 Symbols: 0, 1
 Convention: 210 = 102 = 0b10

 Example: What is 0b110 in base 10?
 0b110 = 1102 = (1 × 22) + (1 × 21) + (0 × 20) = 610

 Hexadecimal (hex, for short) is base 16
 Symbols? 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, …?
 Convention: 1610 = 1016 = 0x10

 Example: What is 0xA5 in base 10?
 0xA5 = A516 = (10 × 161) + (5 × 160) = 16510

28

9, A, B, C, D, E, F

CSE351, Spring 2018L01: Introduction, Binary

Converting to Base 10

 Can convert from any base to base 10
 0b110 = 1102 = (1 × 22) + (1 × 21) + (0 × 20) = 610

 0xA5 = A516 = (10 × 161) + (5 × 160) = 16510

 We learned to think in base 10, so this is fairly natural
for us

 Challenge: Convert into other bases (e.g. 2, 16)

29

CSE351, Spring 2018L01: Introduction, Binary

Challenge Question

 Convert 1310 into binary

 Hints:
 23 = 8
 22 = 4
 21 = 2
 20 = 1

 Think on your own for a minute, then discuss with
your neighbor(s)

30

CSE351, Spring 2018L01: Introduction, Binary

Converting from Decimal to Binary

 Given a decimal number N:
 List increasing powers of 2 from right to left until ≥ N
 Then from left to right, ask is that (power of 2) ≤ N?

• If YES, put a 1 below and subtract that power from N
• If NO, put a 0 below and keep going

 Example: 13 to binary

31

24=16 23=8 22=4 21=2 20=1

CSE351, Spring 2018L01: Introduction, Binary

Converting from Decimal to Base B

 Given a decimal number N:
 List increasing powers of B from right to left until ≥ N
 Then from left to right, ask is that (power of B) ≤ N?

• If YES, put how many of that power go into N and subtract from N
• If NO, put a 0 below and keep going

 Example: 165 to hex

32

162=256 161=16 160=1

CSE351, Spring 2018L01: Introduction, Binary

Converting Binary ↔ Hexadecimal

 Hex → Binary
 Substitute hex digits, then drop any

leading zeros
 Example: 0x2D to binary

• 0x2 is 0b0010, 0xD is 0b1101
• Drop two leading zeros, answer is 0b101101

 Binary → Hex
 Pad with leading zeros until multiple of

4 bits, then substitute each group of 4
 Example: 0b101101

• Pad to 0b 0010 1101
• Substitute to get 0x2D

33

Base 10 Base 2 Base 16
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F

CSE351, Spring 2018L01: Introduction, Binary

Binary → Hex Practice

 Convert 0b100110110101101
 How many digits?
 Pad:
 Substitute:

34

Base 10 Base 2 Base 16
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F

CSE351, Spring 2018L01: Introduction, Binary

Base Comparison

 Why does all of this matter?
 Humans think about numbers in base

10, but computers “think” about
numbers in base 2
 Binary encoding is what allows

computers to do all of the amazing
things that they do!

 You should have this table
memorized by the end of the class
 Might as well start now!

35

Base 10 Base 2 Base 16
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F

CSE351, Spring 2018L01: Introduction, Binary

Numerical Encoding

 AMAZING FACT: You can represent anything
countable using numbers!
 Need to agree on an encoding
 Kind of like learning a new language

 Examples:
 Decimal Integers: 0→0b0, 1→0b1, 2→0b10, etc.
 English Letters: CSE→0x435345, yay→0x796179
 Emoticons: 😃😃 0x0, 😞😞 0x1, 😎😎 0x2, 😇😇 0x3, 😈😈 0x4, 🙋🙋 0x5

36

CSE351, Spring 2018L01: Introduction, Binary

Binary Encoding

 With N binary digits, how many “things” can you
represent?
 Need N binary digits to represent 𝑛𝑛 things, where 2N ≥ 𝑛𝑛
 Example: 5 binary digits for alphabet because 25 = 32 > 26
 Example: < 300 binary digits for every atom in the universe

 A binary digit is known as a bit
 A group of 4 bits (1 hex digit) is called a nibble
 A group of 8 bits (2 hex digits) is called a byte
 1 bit → 2 things, 1 nibble → 16 things, 1 byte → 256 things

37

CSE351, Spring 2018L01: Introduction, Binary

So What’s It Mean?

 A sequence of bits can have many meanings!

 Consider the hex sequence 0x4E6F21
 Common interpretations include:

• The decimal number 5140257
• The characters “No!”
• The background color of this slide
• The fractional number 7.203034 × 10-39

 It is up to the program/programmer to decide how to
interpret the sequence of bits

38

CSE351, Spring 2018L01: Introduction, Binary

Binary Encoding – Colors

 RGB – Red, Green, Blue
 Additive color model (light): byte (8 bits) for each color
 Commonly seen in hex (in HTML, photo editing, etc.)
 Examples: Blue→0x0000FF, Gold→0xFFD700,

White→0xFFFFFF, Deep Pink→0xFF1493

39

CSE351, Spring 2018L01: Introduction, Binary

Binary Encoding – Characters/Text

 ASCII Encoding (www.asciitable.com)
 American Standard Code for Information Interchange

40

http://www.asciitable.com/

CSE351, Spring 2018L01: Introduction, Binary

Binary Encoding – Files and Programs

 At the lowest level, all digital data is stored as bits!

 Layers of abstraction keep everything comprehensible
 Data/files are groups of bits interpreted by program
 Program is actually groups of bits being interpreted by your

CPU

 Computer Memory Demo (if time)
 From vim: %!xxd
 From emacs: M-x hexl-mode

41

CSE351, Spring 2018L01: Introduction, Binary

Summary

 Humans think about numbers in decimal; computers
think about numbers in binary
 Base conversion to go between them
 Hexadecimal is more human-readable than binary

 All information on a computer is binary
 For physical-world engineering reasons!

 Binary encoding can represent anything!
 Computer/program needs to know how to interpret the bits

42

	The Hardware/Software Interface�CSE 351 Spring 2018
	Welcome to CSE351!
	Concise To-Do List
	Who: Course Staff
	Acknowledgments
	Who are You?
	Staying in Touch
	Textbooks
	Course Components
	Collaboration and Academic Integrity
	More logistics stuff?
	Slide Number 12
	The Hardware/Software Interface
	C/Java, assembly, and machine code
	C/Java, assembly, and machine code
	HW/SW Interface: Historical Perspective
	HW/SW Interface: Historical Perspective
	HW/SW Interface: Assemblers
	HW/SW Interface: Higher-Level Languages
	HW/SW Interface: Compiled Programs
	Roadmap
	Course Perspective
	Writing Assembly Code??? In 2018???
	Slide Number 24
	Decimal Numbering System
	Octal Numbering System
	Peer Instruction Question
	Binary and Hexadecimal
	Converting to Base 10
	Challenge Question
	Converting from Decimal to Binary
	Converting from Decimal to Base B
	Converting Binary ↔ Hexadecimal
	Binary → Hex Practice
	Base Comparison
	Numerical Encoding
	Binary Encoding
	So What’s It Mean?
	Binary Encoding – Colors
	Binary Encoding – Characters/Text
	Binary Encoding – Files and Programs
	Summary

