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1. Integers and Floats (7 points)

a. In the card game Schnapsen, 5 cards are used (Ace, Ten, King, Queen, and Jack) from 4 suits,
so 20 cards in total.  What are the minimum number of bits needed to represent a single card in
a Schnapsen deck?

૞
We need 2 bits to represent 4 suits, and 3 bits to represent 5 ranks. So 5 bits in total.

b. How many negative numbers can we represent if given 7 bits and using two’s complement?

૛૟
Using 7 bits, the MSB has to be 1 for negative numbers. So there are ʹ6 negative numbers in
total. 

Consider the following pseudocode (we’ve written out the bits instead of listing hex digits):

int a = 0b0100 0000 0000 0000 0000 0011 1100 0000 
int b = (int)(float)a 
int m = 0b0100 0000 0000 0000 0000 0011 0000 0000 
int n = (int)(float)m 

c. Circle one:  True  or  False:

a == b

The right-most 1 will be truncated (cannot fit in Mantissa)

d. Circle one: True  or False: 

m == n 

No precision will be lost 

e. How many IEEE single precision floating point numbers are in the range [4, 6) (That is, how
many floating point numbers are there where 4 <= x < 6?)

૛૛૛

4 in binary is ͳ.Ͳ ⋅ ʹ2.

6 in binary is ͳ.ͳ ⋅ ʹ2.

So in Mantissa the right-most 22 bits can be either 0 or 1. Therefore, there are ʹ22 bits in
range [4, 6)
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Question M3:  Pointers & Memory  [8 pts] 

For this problem we are using a 64-bit x86-64 machine (little endian).  Below is the count_nz 
function disassembly, showing where the code is stored in memory. 

 

(A) What are the values (in hex) stored in each register shown after the following x86 instructions are 
executed?  Use the appropriate bit widths.  Hint: what is the value stored in %rsi?  [4 pt] 

 Register Value (hex) 

 %rdi 0x 0000 0000 0040 0544 

 %rsi 0x FFFF FFFF FFFF FFFF 

leal 2(%rdi, %rsi), %eax %eax 0x 0040 0545 

movw (%rdi,%rsi,4), %bx %bx 0x 8348 

leal instruction calculates the address 0x400544 + (-1) + 2 = 0x400545.   

movw instruction pulls two bytes starting at memory address 0x400544+4*(-1) = 0x400540, 
which is 0x48 and 0x83.  Remember little-endian! 

(B) Complete the C code below to fulfill the behaviors described in the inline comments using pointer 
arithmetic.  Let char* charP = 0x400544.  [4 pt] 

 
The only 0xDB byte in count_nz is found at address 0x40054a, 6 bytes beyond charP. 

The difference between v2 and charP is 16 bytes.  Since by pointer arithmetic we are moving 2 
“things” away, charP must be cast to a pointer to a data type of size 8 bytes.  Long or any 
pointer (except void*) also accepted.  

0000000000400536 <count_nz>: 

  400536:  85 f6           testl  %esi,%esi 

  400538:  7e 1b           jle    400555 <count_nz+0x1f> 

  40053a:  53              pushq  %rbx 

  40053b:  8b 1f           movl   (%rdi),%ebx 

  40053d:  83 ee 01        subl   $0x1,%esi 

  400540:  48 83 c7 04     addq   $0x4,%rdi 

  400544:  e8 ed ff ff ff  callq  400536 <count_nz> 

  400549:  85 db           testl  %ebx,%ebx 

  40054b:  0f 95 c2        setne  %dl 

    ... some instructions omitted here ... 

char v1 = *(charP + __6__);                     // set v1 = 0xDB 

int* v2 = (int*)((___double___*)charP - 2);     // set v2 = 0x400534 
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Question 5:  Procedures & The Stack  [24 pts] 

The recursive function sum_r() calculates the sum of the elements of an int array and its 
x86-64 disassembly is shown below: 

 

 

(A) The addresses shown in the disassembly are all part of which section of memory?  [2 pt] 

Text or .text also accepted. Instructions/Code 

(B) Disassembly (as shown here) is different from assembly (as would be found in an assembly 
file).  Name two major differences:  [4 pt] 

Differences:  Some possible answers include: 
x No machine code (middle column) would be shown in the assembly (i.e. the 

code hasn’t been assembled yet). 
x Finalized addresses would not be found in the assembly (left column). 
x All labels would still be symbolic/named in the assembly instructions (e.g. jne, 

jmp, callq). 

int sum_r(int *ar, unsigned int len) { 
    if (!len) { 
        return 0; 
    else 
        return *ar + sum_r(ar+1,len-1); 
} 

0000000000400507 <sum_r>: 

  400507:  41 53           pushq  %r12 

  400509:  85 f6           testl  %esi,%esi 

  40050b:  75 07           jne    400514 <sum_r+0xd> 

  40050d:  b8 00 00 00 00  movl   $0x0,%eax 

  400512:  eb 12           jmp    400526 <sum_r+0x1f> 

  400514:  44 8b 1f        movl   (%rdi),%r12d 

  400517:  83 ee 01        subl   $0x1,%esi 

  40051a:  48 83 c7 04     addq   $0x4,%rdi 

  40051e:  e8 e4 ff ff ff  callq  400507 <sum_r> 

  400523:  44 01 d8        addl   %r12d,%eax 

  400526:  41 5b           popq   %r12 

  400528:  c3              retq 
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(C) What is the return address to sum_r that gets stored on the stack?  Answer in hex.  [2 pt] 

The address of the instruction after call. 0x 400523 

(D) What value is saved across each recursive call?  Answer using a C expression.  [2 pt] 

The instruction at address 0x400514 dereferences %rdi and 
stores the value in %r12d. *ar 

(E) Assume main calls sum_r(ar,3) with int ar[] = {3,5,1}.  Fill in the snapshot of 
memory below the top of the stack in hex as this call to sum_r returns to main.  For 
unknown words, write “0x unknown”.  [6 pt] 

0x7fffffffde20 <ret addr to main> 
sum_r(ar,3) 

0x7fffffffde18 <original r12> 

0x7fffffffde10 0x 400523 <ret addr> 
sum_r(ar+1,2) 

0x7fffffffde08 0x 3 <*ar> 

0x7fffffffde00 0x 400523 <ret addr> 
sum_r(ar+2,1) 

0x7fffffffddf8 0x 5 <*ar> 

0x7fffffffddf0 0x 400523 <ret addr> 
sum_r(ar+3,0) 

0x7fffffffdde8 0x 1 <*ar> 

The base case DOES still push %r12 onto the stack. 

(F) Assembly code sometimes uses relative addressing.  The last 4 bytes of the callq 
instruction encode an integer (in little endian).  This value represents the difference 
between which two addresses?  Hint: both addresses are important to this callq.  [4 pt] 

0xffffffe4 = -(0x1b + 1) = -28 value (decimal): -28 

This corresponds to the address we jump to. address 1: 0x 400507 

This corresponds to the return address. address 2: 0x 400523 

(G) What could we change in the assembly code of this function to reduce the amount of 
Stack memory used while keeping it recursive and functioning properly?  [4 pt] 

The issue with recursive functions is that no matter what kind of register you use to 
save a value (caller-saved or callee-saved), the recursive call will overwrite that value 
because it’s an identical function!  So we actually can’t avoid pushing something to the 
stack without making the function iterative.  So any potential saving of Stack space will 
come from the base case.  Keep reading for two possible solution types: 
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Callee-saved:  %r12 is a callee-saved register.  This means that its old value just 
needs to be saved before we overwrite its value; it does not need to be saved at the very 
top of sum_r. 

1) Move the pushq instruction into the recursive case (below the jmp instruction).  

2) Either make the jmp go to address 0x400528 instead  OR  
move the movl $0,%eax above the jne and change the jne to je 0x400528. 

 

Caller-saved:  The value we really care about saving across the recursive call (ar or 
*ar), already starts in a caller-saved register in %rdi!  This value must then be saved 
before we make a recursive call to sum_r and restored once it returns: 

1) Convert the pushq %r12 to pushq %rdi and move it down to replace the 
movl (%rdi),%r12d instruction. 

2) Convert the popq %r12 to popq %rdi and move it right after/below the 
callq. 

3) Convert the addl %r12d,%eax to addl (%rdi),%eax. 
 



Name: NetID:

1. C and Assembly (15 points)

Consider the following (partially blank) x86-64 assembly, (partially blank) C code, and memory listing.
Addresses and values are 64-bit, and the machine is little-endian. All the values in memory are in hex, and
the address of each cell is the sum of the row and column headers: for example, address 0x1019 contains the
value 0x18.

Assembly code:

foo:
movl $0, %eax

L1:
cmpq 0x0, %rdi
je L2
cmp 0x18, 0x1(%rdi)
je L3
mov 0x8(%rdi), %rdi
jmp L1

L2:
ret

L3:
mov (%rdi), %eax
jmp L2

C code:

typedef struct person {
char height;
char age;
struct person* next_person;

} person;

int foo(person* p) {
int answer = 0;
while (p != NULL) {

if (p->age == 24){
answer = p->height;
break;

}
p = p->next_person;

}
return answer;

}

Memory Listing
Bits not shown are 0.

0x00 0x01 ... 0x05 0x06 0x07

0x1000 80 1B ... 00 00 00

0x1008 80 1B ... 00 00 00

0x1010 3F 18 ... 00 00 00

0x1018 3F 18 ... 00 00 00

0x1020 00 00 ... 00 00 00

0x1028 18 10 ... 00 00 00

0x1030 18 10 ... 00 00 00

0x1038 40 40 ... 00 00 00

0x1040 40 40 ... 00 00 00

0x1048 00 00 ... 00 00 00

(a) Given the code provided, fill in the blanks in the C and assembly code.

2 of 17
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(b) Trace the execution of the call to
foo((person*) 0x1028) in the table
to the right. Show which instruc-
tion is executed in each step un-
til foo returns. In each space,
place the assembly instruction and
the values of the appropriate registers
after that instruction executes. You
may leave those spots blank when the
value does not change. You might not
need all steps listed on the table.

Instruction %rdi (hex) %eax (decimal)

movl 0x1028 0

cmpq

je

cmp

je

mov 0x1018

jmp

cmpq

je

cmp

je

mov 63

jmp

ret

(c) Briefly describe the value that foo returns and how it is computed. Use only variable names from the
C version in your answer.

foo traverses a linked list of person structs, and returns the height of the first person whose age ==
24.
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Question F5:  Caching  [10 pts] 

We have 16 KiB of RAM and two options for our cache.  Both are two-way set associative with 256 B 
blocks, LRU replacement, and write-back policies.  Cache A is size 1 KiB and Cache B is size 2 KiB. 

(A) Calculate the TIO address breakdown for Cache B:  [1.5 pt] 

Tag bits Index bits Offset bits 

4 2 8 

14 address bits.  logଶ 256 ൌ 8 offset bits.  2 KiB cache = 8 blocks.  2 blocks/set → 4 sets. 

(B) The code snippet below accesses an integer array.  Calculate the Miss Rate for Cache A if it 
starts cold.  [3 pt] 

#define LEAP 4 

#define ARRAY_SIZE 512 

int nums[ARRAY_SIZE];           // &nums = 0x0100 (physical addr) 

for (i = 0; i < ARRAY_SIZE; i+=LEAP) 

    nums[i] = i*i; 

1/16 

Access pattern is a single write to nums[i].  Stride = LEAP = 4 ints = 16 bytes.  256/16 = 16 
strides per block.  First access is a compulsory miss and the next 15 are hits.  Since we never 
revisit indices, this pattern continues for all cache blocks.  You can also verify that the offset of 
&nums is 0x00, so we start at the beginning of a cache block. 

 
(C) For each of the proposed (independent) changes, write MM for “higher miss rate”, NC for “no 

change”, or MH for “higher hit rate” to indicate the effect on Cache A for the code above:[3.5 pt] 

Direct-mapped _NC_  Increase block size _MH_ 

Double LEAP _MM_  Write-through policy _NC_ 

Since we never revisit blocks, associativity doesn’t matter.  Larger block size means more 
strides/block.  Doubling LEAP means fewer strides/block.  Write hit policy has no effect. 

(D) Assume it takes 200 ns to get a block of data from main memory.  Assume Cache A has a hit 
time of 4 ns and a miss rate of 4% while Cache B, being larger, has a hit time of 6 ns.  What is 
the worst miss rate Cache B can have in order to perform as well as Cache A?  [2 pt] 

0.03 or 3% 

AMATA = HTA + MRA ൈ MP = 4 + 0.04*200 = 12 ns. 
AMATB = HTB + MRB ൈ MP ൑ 12  →  200 MRB ൑ 6  →  MRB ൑ 0.03 
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Question F7:  Processes  [9 pts] 

(A) The following function prints out four numbers.  In the following blanks, list three possible 
outcomes:  [3 pt] 

(1)  _3, 5, 5, 1______ 

(2)  _5, 3, 5, 1______ 

(3)  _5, 5, 3, 1______ 
 
 
 
 
 
 
 

(B) For the following examples of exception causes, write “N” for intentional or “U” for unintentional 
from the perspective of the user process.  [2 pt] 

System call __N__ Hardware failure  __U__ 

Segmentation fault __U__ Mouse clicked __U__ 

Syscalls are part of code you are executing. The others are external to the process. 

(C) Briefly define a zombie process.  Name a process that can reap a zombie process. [2 pt] 

Zombie process:  A process that has ended/exited but is still consuming system resources. 

Reaping process:  The parent process or init/systemd (PID 1). 

(D) In the following blanks, write “Y” for yes or “N” for no if the following need to be updated when 
execv is run on a process.  [2 pt] 

Page table __Y__ PTBR __N__ Stack __Y__ Code __Y__ 

The process already has its own page table, so while we will need to invalidate PTEs from the old 
process image, we don’t need to create another page table, so the PTBR can remain the same.  
We replace/update the old process image’s virtual address space, including Stack and Code. 

void concurrent(void) { 
   int x = 3, status; 
   if (fork()) { 
      if (fork() == 0) { 
         x += 2; 
         printf("%d",x); 
      } else { 
         wait(&status); 
         wait(&status); 
         x -= 2; 
      }       
   } 
   printf("%d",x); 
   exit(0); 
} 

x=3 

fork 
fork 

print 
3 

print print 
5 5 

print wait 
wait 

1 

Simplified 
Process 
Diagram: 
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3. Virtual Memory (9 points)

Assume we have a virtual memory detailed as follows: 

x 256 MiB Physical Address Space
x 4 GiB Virtual Address Space
x 1 KiB page size
x A TLB with 4 sets that is 8-way associative with LRU replacement

For the following questions it is fine to leave your answers as powers of 2. 

a) How many bits will be used for:

 Page offset? _____10______  

Virtual Page Number (VPN)? ____22_____ Physical Page Number (PPN)? ___18______ 

TLB index?   _______2_________ TLB tag? _______20__________ 

b) How many entries in this page table?

222

c) We run the following code with an empty TLB. Calculate the TLB miss rate for data (ignore
instruction fetches). Assume i and sum are stored in registers and cool is page-aligned.

#define LEAP 8 
int cool[512]; 
... // Some code that assigns values into the array cool 
... // Now flush the TLB. Start counting TLB miss rate from here. 
int sum; 
for (int i = 0; i < 512; i += LEAP) { 
  sum += cool[i]; 
} 

TLB Miss Rate: (fine to leave you answer as a fraction) ____ 
૚
૜૛ __________

Sp17 Final Q3
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Question F7:  Virtual Memory  [10 pts] 

Our system has the following setup: 
x 24-bit virtual addresses and 512 KiB of RAM with 4 KiB pages
x A 4-entry TLB that is fully associative with LRU replacement
x A page table entry contains a valid bit and protection bits for read (R), write (W), execute (X)

(A) Compute the following values:  [2 pt]

Page offset width __12__   PPN width __7__ 
Entries in a page table __212__   TLBT width __12__ 

Because TLB is fully associative, TLBT width matches VPN.  There are 2VPN width entries in PT. 

(B) Briefly explain why we make the page size so much larger than a cache block size.  [2 pt]

Take advantage of spatial locality and try to avoid page faults as much as possible. 
Disk access is also super slow, so we want to pull a lot of data when we do access it. 

(C) Fill in the following blanks with “A” for always, “S” for sometimes, and “N” for never if the
following get updated during a page fault.  [2 pt]

Page table __A__  Swap space __S__ TLB _A/N_ Cache __S__ 
When the page is place in physical memory, the new PPN is written into the page table entry. 
Swap space will get updated if a dirty page is kicked out of physical memory. 
For this class, we say that the page fault handler updates the TLB because it is more efficient.  

In reality not all do (OS does not have access to hardware-only TLB; instr gets restarted). 
To update a PTE (in physical mem), you check the cache, so it gets updated on a cache miss. 

(D) The TLB is in the state shown when the following code is executed.  Which iteration (value of i)
will cause the protection fault (segfault)?  Assume sum is stored in a register.
Recall: the hex representations for TLBT/PPN are padded as necessary.  [4 pt]

long *p = 0x7F0000, sum = 0; 
for (int i = 0; 1; i++) { 
   if (i%2) 

*p = 0;
   else 

sum += *p; 
   p++; 
}

i = 513 

Only the current page (VPN = TLBT = 0x7F0) has write access.  Once we hit the next page 
(TLBT = 0x7F1), we will encounter a segfault once we try to write to the page.  We are using 
pointer arithmetic to increment our pointer by 8 bytes at a time.  One page holds 212/23 = 512 
longs, so we first access TLBT 0x7F1 when i = 512.  However, the code is set up so that we 
only write on odd values of i, so the answer is i = 513. 

TLBT  PPN  Valid  R  W  X 
0x7F0 0x31 1 1 1 0 
0x7F2 0x15 1 1 0 0 
0x004 0x1D 1 1 0 1 
0x7F1 0x2D 1 1 0 0 
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Question F8:  Memory Allocation  [9 pts] 

(A) Briefly describe one drawback and one benefit to using an implicit free list over an explicit free
list.  [4 pt]

Implicit drawback: 
x Slower – have to check both allocated

and free blocks
x Must use both boundary tags in every

block – less room for payload

Implicit benefit: 
x Simpler code; easier to manage
x Smaller minimum block size (less

internal fragmentation for free blocks)

(B) The table shown to the right shows the value of the header for the
block returned by the request:  (int*)malloc(N*sizeof(int))
What is the alignment size for this dynamic memory allocator? [2 pt]

16 bytes 

The alignment size is given by the difference in size once we cross an alignment boundary. 
Remembering to mask out the allocated tag, we see that 6 ints = 24 bytes gets rounded up to 32 
and 8 ints = 32 bytes gets rounded up to 48 (remember extra space for internal fragmentation – 
at least the header, possibly other things). 

(C) Consider the C code shown here.  Assume that
the malloc call succeeds and foo is stored in
memory (not just in a register).  Fill in the
following blanks with “>” or “<”  to compare
the values returned by the following expressions
just before return 0.  [3 pt]

ZERO __<__  &ZERO

foo __<__  &foo

foo __>__  &str

ZERO and str are global variables, so their addresses are in the Static Data section of memory. 
str's value is the address of a string literal, which sits at the bottom portion of Static Data. 
foo is a local variable, so its address is in the Stack, but its value is the address of a block in the 
Heap. 
The virtual address space is arranged such that 0 < Instructions < Static Data < Heap < Stack. 

N header value 
6 33
8 49
10 49
12 65

#include <stdlib.h> 
int ZERO = 0; 
char* str = "cse351"; 

int main(int argc, char *argv[]) { 
    int *foo = malloc(8); 

free(foo); 
    return 0; 
} 
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10. C vs. Java (11 points) Consider this Java code (left) and somewhat similar C code (right) running
on x86-64:

public class Foo {
private int[] x;
private int y;
private int z;
private Bar b;
public Foo() {

x = null;
b = null;

}
}

struct Foo {
int x[6];
int y;
int z;
struct Bar * b;

};

struct Foo * make_foo() {
struct Foo * f = (struct Foo *)malloc(sizeof(struct Foo));
f->x = NULL;
f->b = NULL;
return f;

}

(a) In Java, new Foo() allocates a new object on the heap. How many bytes would you expect this
object to contain for holding Foo’s fields? (Do not include space for any header information,
vtable pointers, or allocator data.)

(b) In C, malloc(sizeof(struct Foo)) allocates a new object on the heap. How many bytes would
you expect this object to contain for holding struct Foo’s fields? (Do not include space for any
header information or allocator data.)

(c) The function make_foo attempts to be a C variant of the Foo constructor in Java. One line fails
to compile. Which one and why?

(d) What, if anything, do we know about the values of the y and z fields after Java creates an instance
of Foo?

(e) What, if anything, do we know about the values of the y and z fields in the object returned by
make_foo?

Solution:

(a) 24

(b) 40

(c) f->x = NULL does not compile. In C, the field declaration int x[6] creates an inline array, not
a pointer, so it does not make any sense to “assign NULL to the array” — the struct itself has
slots for six array elements.

(d) We know both fields hold 0.

(e) We know nothing. (We know something abou their size, but not their contents – it could be any
bit-pattern.)
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