
CSE	351	Section	8	–	More	Caches,	Processes	&	Concurrency	
Hi	there!	Welcome	back	to	section,	we’re	happy	that	you’re	here	-	

Practice	Cache	Exam	Problem	 11	pts 	
We	have	a	64	KiB	address	space	and	two	different	caches.		Both	are	1	KiB,	direct‐mapped	caches	with	random	
replacement	and	write‐back	policies.		Cache	X	uses	64	B	blocks	and	Cache	Y	uses	256	B	blocks.	
	
a  Calculate	the	TIO	address	breakdown	for	Cache	X:	

Tag	 Index	 Offset	

	 	 	

	
b  During	some	part	of	a	running	program,	Cache	Y’s	management	bits	are	as	shown	below.		Four	options	for	the	

next	two	memory	accesses	are	given	 R	 	read,	W	 	write .		Circle	the	option	that	results	in	data	from	the	
cache	being	written	to	memory.	

Line	 Valid	 Dirty	 Tag	
00	 0	 0	 1000	01	
01	 1	 1	 0101	01	
10	 1	 0	 1110	00	
11	 0	 0	 0000	11	

	
1 	R 0x4C00, W 0x5C00	 2 	W 0x5500, W 0x7A00	

3 	W 0x2300, R 0x0F00	 4 	R 0x3000, R 0x3000	
	
c  The	code	snippet	below	loops	through	a	character	array.		Give	the	value	of	LEAP	that	results	in	a	Hit	Rate	of	

15/16	for	Cache	Y.	

#define ARRAY_SIZE 8192 
char string[ARRAY_SIZE];   // &string = 0x8000 
for(i = 0; I < ARRAY_SIZE; i += LEAP) { 
 string[i] |= 0x20;   // to lower 
} 

	

	
	
d  For	the	loop	shown	in	part	 c ,	let	LEAP	 	64.		Circle	ONE	of	the	following	changes	that	increases	the	hit	rate	of	

Cache	X:	

Increase	Block	Size	 Increase	Cache	Size	 Add	a	L2$	 Increase	LEAP	

e  For	the	following	cache	access	parameters,	calculate	the	AMAT.		Please	simplify	and	include	units.	

L1$	Hit	Time	 L1$	Miss	Rate	 MEM	Hit	Time	
2	ns	 40%	 400	ns	
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Benedict	Cumbercache:	
Given	the	following	sequence	of	access	results	 addresses	are	given	in	decimal 	on	a	cold/empty	cache	of	size	16	
bytes,	what	can	we	deduce	about	its	properties?		Assume	an	LRU	replacement	policy.	

        (0, Miss),	(8, Miss),	(0, Hit),	(16, Miss),	(8, Miss) 

1  What	can	we	say	about	the	block	size?	

	

	

	

2  What	is	this	cache’s	associativity?	

	

	

	

3  How	many	sets	could	this	cache	have?	

	

	

	

4  How	many	bits	will	the	tag	use	given	an	 ‐bit	address?	

	

	

	

Fork	and	Concurrency:	
Consider	this	code	using	Linux’s	fork:	

    int x = 7; 
    if( fork() ) { 
        x++; 
        printf(" %d ", x); 
        fork(); 
        x++; 
        printf(" %d ", x); 
    } else { 
        printf(" %d ", x); 
    } 

What	are	all	the	different	possible	outputs	 i.e.	order	of	things	printed 	for	this	code?	
Hint:		there	are	four	of	them. 	
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