
CSE	351	Section	8	–	More	Caches,	Processes	&	Concurrency	
Hi	there!	Welcome	back	to	section,	we’re	happy	that	you’re	here	-	

Practice	Cache	Exam	Problem	 11	pts 	
We	have	a	64	KiB	address	space	and	two	different	caches.		Both	are	1	KiB,	direct‐mapped	caches	with	random	
replacement	and	write‐back	policies.		Cache	X	uses	64	B	blocks	and	Cache	Y	uses	256	B	blocks.	
	
a Calculate	the	TIO	address	breakdown	for	Cache	X:	

Tag	 Index	 Offset	

	 	 	

	
b During	some	part	of	a	running	program,	Cache	Y’s	management	bits	are	as	shown	below.		Four	options	for	the	

next	two	memory	accesses	are	given	 R	 	read,	W	 	write .		Circle	the	option	that	results	in	data	from	the	
cache	being	written	to	memory.	

Line	 Valid	 Dirty	 Tag	
00	 0	 0	 1000	01	
01	 1	 1	 0101	01	
10	 1	 0	 1110	00	
11	 0	 0	 0000	11	

	
1 	R 0x4C00, W 0x5C00	 2 	W 0x5500, W 0x7A00	

3 	W 0x2300, R 0x0F00	 4 	R 0x3000, R 0x3000	
	
c The	code	snippet	below	loops	through	a	character	array.		Give	the	value	of	LEAP	that	results	in	a	Hit	Rate	of	

15/16	for	Cache	Y.	

#define ARRAY_SIZE 8192
char string[ARRAY_SIZE]; // &string = 0x8000
for(i = 0; I < ARRAY_SIZE; i += LEAP) {
 string[i] |= 0x20; // to lower
}

	

	
	
d For	the	loop	shown	in	part	 c ,	let	LEAP	 	64.		Circle	ONE	of	the	following	changes	that	increases	the	hit	rate	of	

Cache	X:	

Increase	Block	Size	 Increase	Cache	Size	 Add	a	L2$	 Increase	LEAP	

e For	the	following	cache	access	parameters,	calculate	the	AMAT.		Please	simplify	and	include	units.	

L1$	Hit	Time	 L1$	Miss	Rate	 MEM	Hit	Time	
2	ns	 40%	 400	ns	

	
	

	

210/26=216
is .io = g ¥ =P

⇒ 4 26=64 ⇒ 6

addresses ⇒ 16 bit addresses

Tag : 6 bits

%
= 2 bitscagne } indet :

g bitsOffset :

we only care about 8 MSBS

tag + index)
gtsagsdfnfatfvrhte gdniorttsebjtsorust

dirty Bit not Set
dirty bit not set

, so
back

X just update cache
X

update cache

0601001100
. . . 0601011100 .

. .
Ob 01010101 . .

. Ob 01111010

O
we wrote something to cache

,
then X (dirty bit not Set

tried to read something different
,

0600100011 . .
 Ob 00001111 . . . so we need to write bacu to Ob 00110000 0600110000 On line 0)

memory .

We read then write each address .

For a
' % hit rate ,

we must access 8 bytes per block : 1 Miss for the first read
,

followed
by 15 hits for subsequent Rlws

.

32

Since blooms are 256 B and chars are 1 byte : LEAP = 2¥ = zz

p more hits / block
decreases Miss penalty

C)
N.c

.
N.C .

AMAT
= (hit time + (mrss rate)(miss time

(You always pay for ht time ; you at pay
162 ns

.

for Miss time
,

when you Moss)

2 + (0.4) (Yoo) = 162

Benedict	Cumbercache:	
Given	the	following	sequence	of	access	results	 addresses	are	given	in	decimal 	on	a	cold/empty	cache	of	size	16	
bytes,	what	can	we	deduce	about	its	properties?		Assume	an	LRU	replacement	policy.	

 (0, Miss),	(8, Miss),	(0, Hit),	(16, Miss),	(8, Miss)

1 What	can	we	say	about	the	block	size?	

	

	

	

2 What	is	this	cache’s	associativity?	

	

	

	

3 How	many	sets	could	this	cache	have?	

	

	

	

4 How	many	bits	will	the	tag	use	given	an	 ‐bit	address?	

	

	

	

Fork	and	Concurrency:	
Consider	this	code	using	Linux’s	fork:	

 int x = 7;
 if(fork()) {
 x++;
 printf(" %d ", x);
 fork();
 x++;
 printf(" %d ", x);
 } else {
 printf(" %d ", x);
 }

What	are	all	the	different	possible	outputs	 i.e.	order	of	things	printed 	for	this	code?	
Hint:		there	are	four	of	them. 	

	

�1� �2� �3� �4� �5�

00000 01000 00000 I 0000 01000

E 8 byte bioou Size

(access �2� to address 8 misses)

62 because @ caused one of the preu entries to be evicted .

could A be direct mapped ?

. block size =L : 16 sets
, 4 set bits ⇒ 16 should evict O

,

but it doesn't

. block site = 2 i 8 sets
,

3 Set bits
, I offset bit ⇒ 16 should evict 0 but doesn't MOME Match

. block size = 4 : 4 Sets
,

2 Set bits
,

 2 offset bits ⇒ 16 should evict 0 but doesn't ⇒ must be

. block she = 8 : 2 sets
,

1 set bits
,

3 offset bits ⇒ 16 showd evict O but doesn't

}
2 -

way

We need to Know Brock size for this . we know the Cache is 2- way

set associative and total see = .

} sogou.ee?aIYve:ngteftfasttnoenaae9.bafnsIs3m.9dnme16 = 2 * S * K 4
, K=2

S s 2
,

 1<=4 last 3 bits of All of
 addresses

K E { i. 2.4 ,
8 } from Ql

,
So S E { ,

, 2,4 ,
8 } s = i

, 1<=8 are the Some
,

so they'll all map
to

the some set regardless (which is what we want)

=) all Set sizes work

Offset bits = Iogzk C = K . E. s ⇒ s = C-

C
KE

index bits = 1092 (¥

tag bits = n -

iogzC÷¥
) -

log ,k = n . fog ,
(f⇒) + iogzis) = n - log ,

(¥⇐' *) = M - I
092

(" ⇒

= n .

rogz (16/2) = n -3
,

µ returns 0 to the child
,

child PID to parent

•

/ xsf•

×=8

µ
"

8
"

•off;;
.t¥:

Nq:

7 8 q q
the only time we fork conditionally
is the first fork

.

So the order of

8 F 9 9 the 7 is undefined
,

but all others

8 9 f q
Will always appear in the some

relative order .
(the order of the 9s may

8 9 9 7 change ,
but that doesn't matter since they're both 9.)

