
CSE	351	Section	8	–	More	Caches,	Processes	&	Concurrency	
Hi	there!	Welcome	back	to	section,	we’re	happy	that	you’re	here	-	

Practice	Cache	Exam	Problem	ሺ11	ptsሻ	
We	have	a	64	KiB	address	space	and	two	different	caches.		Both	are	1	KiB,	direct‐mapped	caches	with	random	
replacement	and	write‐back	policies.		Cache	X	uses	64	B	blocks	and	Cache	Y	uses	256	B	blocks.	
	
aሻ Calculate	the	TIO	address	breakdown	for	Cache	X:	

Tag	 Index	 Offset	

	 	 	

	
bሻ During	some	part	of	a	running	program,	Cache	Y’s	management	bits	are	as	shown	below.		Four	options	for	the	

next	two	memory	accesses	are	given	ሺR	ൌ	read,	W	ൌ	writeሻ.		Circle	the	option	that	results	in	data	from	the	
cache	being	written	to	memory.	

Line	 Valid	 Dirty	 Tag	
00	 0	 0	 1000	01	
01	 1	 1	 0101	01	
10	 1	 0	 1110	00	
11	 0	 0	 0000	11	

	
ሺ1ሻ	R 0x4C00, W 0x5C00	 ሺ2ሻ	W 0x5500, W 0x7A00	

ሺ3ሻ	W 0x2300, R 0x0F00	 ሺ4ሻ	R 0x3000, R 0x3000	
	
cሻ The	code	snippet	below	loops	through	a	character	array.		Give	the	value	of	LEAP	that	results	in	a	Hit	Rate	of	

15/16	for	Cache	Y.	

#define ARRAY_SIZE 8192 
char string[ARRAY_SIZE];   // &string = 0x8000 
for(i = 0; I < ARRAY_SIZE; i += LEAP) { 
 string[i] |= 0x20;   // to lower 
} 

	

	
	
dሻ For	the	loop	shown	in	part	ሺcሻ,	let	LEAP	ൌ	64.		Circle	ONE	of	the	following	changes	that	increases	the	hit	rate	of	

Cache	X:	

Increase	Block	Size	 Increase	Cache	Size	 Add	a	L2$	 Increase	LEAP	

eሻ For	the	following	cache	access	parameters,	calculate	the	AMAT.		Please	simplify	and	include	units.	

L1$	Hit	Time	 L1$	Miss	Rate	 MEM	Hit	Time	
2	ns	 40%	 400	ns	
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Benedict	Cumbercache:	
Given	the	following	sequence	of	access	results	ሺaddresses	are	given	in	decimalሻ	on	a	cold/empty	cache	of	size	16	
bytes,	what	can	we	deduce	about	its	properties?		Assume	an	LRU	replacement	policy.	

        (0, Miss),	(8, Miss),	(0, Hit),	(16, Miss),	(8, Miss) 

1ሻ What	can	we	say	about	the	block	size?	

	

	

	

2ሻ What	is	this	cache’s	associativity?	

	

	

	

3ሻ How	many	sets	could	this	cache	have?	

	

	

	

4ሻ How	many	bits	will	the	tag	use	given	an	݊‐bit	address?	

	

	

	

Fork	and	Concurrency:	
Consider	this	code	using	Linux’s	fork:	

    int x = 7; 
    if( fork() ) { 
        x++; 
        printf(" %d ", x); 
        fork(); 
        x++; 
        printf(" %d ", x); 
    } else { 
        printf(" %d ", x); 
    } 

What	are	all	the	different	possible	outputs	ሺi.e.	order	of	things	printedሻ	for	this	code?	
ሺHint:		there	are	four	of	them.ሻ	
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