CSE 351 Section 7 - Caches

Hi there! Welcome back to section, we're happy that you're here ©

IEC Prefixing System

We often need to express large numbers and the preferred tool for doing so is the IEC Prefixing System!

Kibi- (Ki) 210~103 | Pebi- (Pi) 25 ~ 1015
Mebi- (Mi) 220~106 | Exbi- (Ei) 260 ~ 1018
Gibi- (G) 230~109 | Zebi- (Z) 27°~ 102
Tebi- (Ti) 24 ~102 | Yobi- (Yi) 280~ 1024

Prefix Exercises:

Write the following as powers of 2. The first one has been done for you:

2 Ki-bytes = 211 bytes

64 Gi-bits =

16 Mi-integers =

256 Pi-pencils =

512 Ki-books =

128 Ei-students =

Write the following using IEC Prefixes. The first one has been done for you:

215 cats = 32 Ki-cats

234 birds =

243 huskies =

261 things =

227 caches =

258 addresses =

Accessing a Cache (Hit or Miss?)

Assume the following caches all have block size K = 4 and are in the current state shown (you can ignore "-").
All values are shown in hex. Tag fields are NOT padded, while bytes of the cache blocks are shown in full. The word
size for the machine with these caches is 12 bits (i.e. addresses are 12 bits long)

Direct-Mapped:

Set| Valid | Tag | BO | B1 | B2 | B3 | Set| Valid | Tag | BO | B1 | B2 | B3
0 15 |63 | B4 |Cl |24 8 0 - - —-1-1 - Offset bits:
1 0 — — — — — 9 1 0 01 12| 23] 34
2 0 — — — — — A 1 1 98 1 89 | CB | BC
3 1 D DE | AF | BA | DE B 0 1E 4B | 331 10 | 54 Index bits:
4 0 [—T-=-T=-T=T=1 clLo T -—T-T=-T=-1-
5/ 0 — | = =1=1=1 p[1 [11 coloa[39]an
6 1 13 31 114|151 93 E 0 — — - - - Tag bits:
7] 0 — [-1T-1T-T- F| 1 F |[Fr|6F[30] O

Hit or Miss? | Data returned

a) Read 1byteat 0x7AC

b) Read 1byteat 0x024

c) Read 1 byte at 0x99F

2-way Set Associative:

Set | Valid | Tag [BO| B1 | B2 | B3 | Set| Valid | Tag | BO | B1 | B2 | B3

0 - -1 -1 —-1- 0 0 - - =1 -1 - Offset bits:
1 0 — — — — — 1 1 2F 01|20 40 | 03

2 1 3 47 | D4 | A1 | 3B 2 1 OE 99 1091|187 | 56

3 0 — -1 = | - — 3 0 — - | - - | - Index bits:
4 0 9 CA|FE | FO | OD 4 0 — — — — —

5 1 21 DE | AD | BE | EF 5 0 — — — — —

60 — = === 6] 1 |37 [22]B6|DB|2A Tag bits:

7 1 11 00 | 12 | 51 | 55 7 0 — — — — —

Hit or Miss? | Data returned

a) Read 1byteat 0x435
b) Read 1 byte at 0x388

c¢) Read 1byteat 0x0D3

Fully Associative:
Set | Valid | Tag | BO| B1 | B2 | B3 | Set| Valid | Tag | BO | B1 | B2 | B3

0 1 1F4 |00 |01 | 02|03 0 0 — — — - | - Offset bits:
0 0 — — — — — 0 1 AB 02 130 44| 67

0 1 100 | ¥4 4D | EE | 11 0 1 34 FD|EC|BA | 23

0 1 77 12 | 23 | 34 | 45 0 0 — - — - — Index bits:
0 0 — — — — — 0 1 1Co | 00 | 11| 22 | 33

0 1 101 | DA | 14 | EE | 22 0 1 45 67| 78 | 89| 9A

o] © — [=1T-1T-1T-1 of 1 1 [70] 00|44]n6 Tag bits:
0 1 16 90 | 32 | AC | 24 0 0 — — — — —

Hit or Miss?

Data returned

a) Read 1byteat 0x1DD

b) Read 1byteat 0x719

c) Read 1 byte at 0x2AA

Code Analysis

Consider the following code that accesses a two-dimensional array (of size 64X64 ints).

Assume we are using a direct-mapped, 1 KiB cache with 16 B block size.

for

(int i
for

0;

(int j
arrayl[i] [7]

i < 64;

i++)
J < 64;
0;

§++)

a) What is the miss rate of the execution of the entire loop?

// assume &array

0x600000

b) What code modifications can change the miss rate? Brainstorm before trying to analyze.

¢) What cache parameter changes (size, associativity, block size) can change the miss rate?

Cache Simulator Demo

Let’s get some practice with the cache simulator! First, go to:

https://courses.cs.washington.edu/courses/cse351/cachesim/

At the top you'll see 4 boxed regions:

e System Parameters * This lets you play around with the structure/format of the cache

e Manual Memory Access t This is where you actually make reads and writes to memory

e History An interactive log of executed accesses. You can type/paste accesses here, too!
e Simulation Messages Describes the most recent actions made by the simulator.

T These include “Explain” toggles that walk you through execution step-by-step.

a)

b)

d)

Set the following System Parameters (but don’t generate the system yet):

Address Width — 6, Cache Size — 16, Block Size — 4, Associativity — 2, leave the rest at default values.

Based on just the system parameter numbers above shown, predict the following:

i) Highest memory address: Ob ii) Number of sets in cache:

[Click “Generate System” to verify your responses |

We are about to READ the byte at the address 0x2A. Predict the following:
i) This block will be placed in set #: _ ii) The stored tag bits will be: 0b_
iii) The 4 bytes of datain this block are (in order): 0x , 0% , 0x , 0%

[Enter “2a” into the Read Addr and click “Read” to verify your responses)|

We are about to WRITE the byte 0xB1 to the address 0x1B. Predict the following:
i) This block will be placed inset#: __ ii) The stored tag bits will be: 0b___
[Enter “1b” into the Write Addr and “b1” into the Write Byte and then click “Write” to verify your responses |
iii) Notice that the value of the byte at address 0x1B is different in the cache and memory.

What indicates this disparity in the cache?

What would have happened if our write miss policy were “No Write-Allocate” instead?

We are about to READ the byte at address 0x01. Predict the following:

i) This block will be placed in set #: _ ii) The stored tag bits will be: 0b___
iii) Will this access cause a conflict/replacement? (circle one) Yes No
iv) If yes, which block will be evicted? (circle one) Read from (b) Write from (c)

[Enter “01” into the Read Addr and click “Read” to verify your responses |

We are about to WRITE the byte 0XE9 to the address 0x1C. Predict the following:

i) This block will be placed in set #: ii) The stored tag bits will be: 0b__

iii) Will this access cause a conflict/replacement? (circle one) Yes No
iv) If yes, which block will be evicted? Read from (b) Write from (c) Read from (d)
[Enter “Ic” into the Write Addr and “e9” into the Write Byte and then click “Write” to verify your responses |

f) At this point, your History should show: Appendthe bolded text below so that your History looks like:

R(0x2a) =M R(0x2a) =M
W(0x1lb, O0xbl) = M W(0x1lb, 0xbl) = M
R(0x01) = M R(0x01) =M
W(0xlc, 0xe9) =M W(0xlc, 0xe9) =M
> > W(0x03, Oxff)

R(0x27)

R(0x10)

W(0x1ld, 0x00)

[Click “Load.” You'll notice that “ = ?”is appended to each of these new memory accesses |
Predict if ‘2’ will resolve to Hit (H) or Miss (M) for each of the new accesses:
i) w(0ox03, Oxff) = i) R(0x27) =

iii) R (0x10) = iv) W(0x1d, 0x00) =

[Click the down arrow () to verify your responses for each access |

g) The cache, after the 8 executions detailed above, should look like this:

VDT Cache Data
| [1[1]o][20]£6]ef[££]

" U Tl02]b8[bd]1alcal
11[1]3[e9][00[f6]e5]
Set 1
[1]0]4[1al6£]7e[63]

The small numbers on the right (outside of the sets) indicate how recently used each line is within the set, with
smaller numbers being more recently used).

i) An LRU replacement policy will evict which block on the next conflict in set 0? Line 1 Line 2

ii) What is one benefit of using LRU over Random?

iii) What is one benefit of using Random over LRU?

h) If we were to flush the cache right now how many bytes in memory would change?

How many bytes would change if we were using Write Through instead of Write Back?

Can you explain why these numbers are the same/different? (if not, try changing the write hit policy and re-
running using the history above).

