
CSE	351	Section	4	–	GDB	and	x86-64	Assembly	
Hi	there!	Welcome	back	to	section,	we’re	happy	that	you’re	here	J	

x86-64	Assembly	Language	
Assembly	language	is	a	human-readable	representation	of	machine	code	instructions	(generally	a	one-to-one	
correspondence).		Assembly	is	machine-specific	because	the	computer	architecture	and	hardware	are	designed	to	
execute	a	particular	machine	code	instruction	set.	

x86-64	is	the	primary	64-bit	instruction	set	architecture	(ISA)	used	by	modern	personal	computers.		It	was	
developed	by	Intel	and	AMD	and	its	32-bit	predecessor	is	called	IA32.		x86-64	is	designed	for	complex	instruction	
set	computing	(CISC),	generally	meaning	it	contains	a	larger	set	of	more	versatile	and	more	complex	instructions.	

For	this	course,	we	will	utilize	only	a	small	subset	of	x86-64’s	instruction	set	and	omit	floating	point	instructions.	

x86-64	Instructions	
The	subset	of	x86-64	instructions	that	we	will	use	in	this	course	take	either	one	or	two	operands,	usually	in	the	
form:		instruction operand1, operand2.		There	are	three	options	for	operands:	

• Immediate:		constant	integer	data	(e.g.		$0x400,	$-533)	or	an	address/label	(e.g.	Loop,	main)	
• Register:		use	the	data	stored	in	one	of	the	16	general	purpose	registers	or	subsets	(e.g.	%rax,	%edi)	
• Memory:		use	the	data	at	the	memory	address	specified	by	the	addressing	mode		D(Rb,Ri,S)	

The	operation	determines	the	effect	of	the	operands	on	the	processor	state	and	has	a	suffix	(“b”	for	byte,	“w”	for	
word,	“l”	for	long,	“q”	for	quad	word)	that	determines	the	bit	width	of	the	operation.		Sometimes	the	operation	
size	can	be	inferred	from	the	operands,	so	the	suffix	is	omitted	for	brevity.	

Control	Flow	and	Condition	Codes	
Internally,	condition	codes	(Carry,	Zero,	Sign,	Overflow)	are	set	based	on	the	result	of	the	previous	operation.		The	
j*	and	set*	families	of	instructions	use	the	values	of	these	“flags”	to	determine	their	effects.		See	the	table	
provided	on	your	reference	sheet	for	equivalent	conditionals.	

An	indirect	jump	is	specified	by	adding	an	asterisk	(*)	in	front	of	a	memory	operand	and	causes	your	program	
counter	to	load	the	address	stored	at	the	computed	address.	(e.g.	jmp *%rax) This	is	useful	for	switch	case	
statements

Procedure	Basics	
The	instructions	push,	pop,	call,	and	ret	move	the	stack	pointer	(%rsp)	automatically.	

%rax	is	used	for	the	return	value	and	the	first	six	arguments	go	in	%rdi,	%rsi,	%rdx,	%rcx,	%r8,	%r9		
	 (“Diane’s	Silk	Dress	Cost	$89”).	

x86	instructions	 English	equivalent	

movq $351, %rax Move	the	number	351	into		8-byte	(quad)	register	“rax”	

addq %rdi, %rsi Add	the	64-bit	value	of	%rdi	to	%rsi	

movq (%rdi), %r8 Move	the	64-bit	data	at	the	address	stored	in	%rdi	to	%r8	

leaq (%rax,%rax,8), %rax Compute	9	*	%rax,	and	store	the	64-bit	result	in	%rax	

	

Exercises:	
1. [CSE351	Au14	Midterm]		Symbolically,	what	does	the	following	code	return?	

movl (%rdi), %eax # %rdi -> x; r = *x
leal (%eax,%eax,2), %eax # %rax -> r; r = (*x) * 3
addl %eax, %eax # r = (*x)*3 + (*x)*3
andl %esi, %eax # %rsi -> y; r = ((*x)*6) & y
subl %esi, %eax # r = (((*x)*6) & y) - y
ret

	
	 (((*x) * 6) & y) - y	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

2. 	[CSE351	Au15	Midterm]		Convert	the	following	C	function	into	x86-64	assembly	code.		You	are	not	being	
judged	on	the	efficiency	of	your	code	–	just	the	correctness.	
long happy(long *x, long y, long z) {
 if (y > z)
 return z + y;
 else
 return *x;
}

	
happy:
 cmpq %rdx, %rsi
 jle .else
 leaq (%rdx, %rsi), %rax
 ret
.else:
 movq (%rdi), %rax
 ret	

	
Multiple	other	possibilities	(e.g.		switch	ordering	of	if/else	clauses,	replace	lea	with	mov/add	instruction	
pair).	

	 	

3. Write	an	equivalent	C	function	for	the	following	x86-64	code:	
mystery:
1 testl %edx, %edx # %edx is 3rd argument (z)
2 js .L3 # jump to .L3 if z<0
3 cmpl %esi, %edx # %esi is 2nd argument (y)
4 jge .L3 # jump to .L3 if y>=z
5 movslq %edx, %rdx # sign-extend 3rd argument (z)
6 movl (%rdi,%rdx,4), %eax # %rdi is 1st argument (x), calc *(x + z*4)
7 ret
.L3:
8 movl $0, %eax # return 0
9 ret	

	
	

int mystery(int *x, int y, int z) {
 if (z >= 0 && z < y)
 return x[z];
 else
 return 0;
}

	
Notes:	

• If	either	conditional	is	True,	then	we	jump	to	the	“else”	clause,	so	in	C	we	execute	the	“if”	clause	only	
when	the	complement	of	both	of	them	are	True.	

• Line	6	indicates	that	the	return	type	is	4	bytes	(int).		Line	8	is	ambiguous	since	it	zeros	out	the	
entire	8	bytes	of	%rax.	

• Argument	variable	names	are	arbitrary.		Based	on	usage,	could	perhaps	have	used	x→ar,	y→n,	
z→k.	

• First	argument	had	to	point	to	int	based	on	scale	factor	in	Line	6.		Both	int *x	and	int x[]	
work.	

	 	

4. 	[CSE351	Wi17	Midterm]	Consider	 the	 following	 x86-64,	 (partially	 blank)	C	 code,	 and	memory	diagram.	
Addresses	and	values	are	64-bit.	Fill	in	the	C	code	based	on	the	given	assembly.	

	
	
	
	
	
	
	
	
	
	
	 	

int foo(long* p) {

 int result = 0;

 while (p != NULL) {

 p = *(long**)p;

 result = result + 1;

 }

 return result;

}

foo:
 movl $0, %eax

L1:
 testq %rdi, %rdi
 je L2
 movq (%rdi), %rdi
 addl $1, %eax
 jmp L1

L2:
 ret

	

Instruction	 %rdi	(hex)	 %eax	(decimal)	
movl 0x1000 0

testq

je

movq 0x1030

addl 1

jmp

testq

je

movq 0x0

addl 2

jmp

testq

je

ret

Address	 Value	
0x1000 0x1030

0x1008 0x1020
0x1010 0x1000
0x1018 0x0000

0x1020 0x1030
0x1028 0x1008
0x1030 0x0000
0x1038 0x1038
0x1040 0x1048
0x1048 0x1040

Part	2:	Follow	the	execution	of	foo	in	assembly,	where	0x1000	is	passed	in	to	%rdi	
	
	
Write	the	values	of	%rdi	and	%eax	in	the	columns.	If	the	value	doesn’t	change,	you	can	leave	it	blank	

