
CSE 351 Section 4 – GDB and x86-64 Assembly
Hi there! Welcome back to section, we’re happy that you’re here ☺

x86-64 Assembly Language

Assembly language is a human-readable representation of machine code instructions (generally a one-to-one
correspondence). Assembly is machine-specific because the computer architecture and hardware are designed to
execute a particular machine code instruction set.

x86-64 is the primary 64-bit instruction set architecture (ISA) used by modern personal computers. It was
developed by Intel and AMD and its 32-bit predecessor is called IA32. x86-64 is designed for complex instruction
set computing (CISC), generally meaning it contains a larger set of more versatile and more complex instructions.

For this course, we will utilize only a small subset of x86-64’s instruction set and omit floating point instructions.

x86-64 Instructions

The subset of x86-64 instructions that we will use in this course take either one or two operands, usually in the
form: instruction operand1, operand2. There are three options for operands:

• Immediate: constant integer data (e.g. $0x400, $-533) or an address/label (e.g. Loop, main)

• Register: use the data stored in one of the 16 general purpose registers or subsets (e.g. %rax, %edi)

• Memory: use the data at the memory address specified by the addressing mode D(Rb,Ri,S)

The operation determines the effect of the operands on the processor state and has a suffix (“b” for byte, “w” for
word, “l” for long, “q” for quad word) that determines the bit width of the operation. Sometimes the operation
size can be inferred from the operands, so the suffix is omitted for brevity.

Control Flow and Condition Codes

Internally, condition codes (Carry, Zero, Sign, Overflow) are set based on the result of the previous operation. The
j* and set* families of instructions use the values of these “flags” to determine their effects. See the table

provided on your reference sheet for equivalent conditionals.

An indirect jump is specified by adding an asterisk (*) in front of a memory operand and causes your program
counter to load the address stored at the computed address. (e.g. jmp *%rax) This is useful for switch case
statements

Procedure Basics

The instructions push, pop, call, and ret move the stack pointer (%rsp) automatically.

%rax is used for the return value and the first six arguments go in %rdi, %rsi, %rdx, %rcx, %r8, %r9
 (“Diane’s Silk Dress Cost $89”).

x86 instructions English equivalent

movq $351, %rax Move the number 351 into 8-byte (quad) register “rax”

addq %rdi, %rsi

movq (%rdi), %r8

leaq (%rax,%rax,8), %rax

Exercises:

1. [CSE351 Au14 Midterm] Symbolically, what does the following code return?

movl (%rdi), %eax # %rdi -> x

leal (%eax,%eax,2), %eax # %rax -> r

addl %eax, %eax

andl %esi, %eax # %rsi -> y

subl %esi, %eax

ret

2. [CSE351 Au15 Midterm] Convert the following C function into x86-64 assembly code. You are not being
judged on the efficiency of your code – just the correctness.

long happy(long *x, long y, long z) {

 if (y > z)

 return z + y;

 else

 return *x;

}

3. Write an equivalent C function for the following x86-64 code:

mystery:

 testl %edx, %edx

 js .L3

 cmpl %esi, %edx

 jge .L3

 movslq %edx, %rdx

 movl (%rdi,%rdx,4), %eax

 ret

.L3:

 movl $0, %eax

 ret

4. [CSE351 Wi17 Midterm] Consider the following x86-64, (partially blank) C code, and memory diagram.
Addresses and values are 64-bit. Fill in the C code based on the given assembly.

int foo(long* p) {

 int result = ____;

 while (________) {

 p = ___________;

 _____ = __________;

 }

 return result;

}

foo:

 movl $0, %eax

L1:

 testq %rdi, %rdi

 je L2

 movq (%rdi), %rdi

 addl $1, %eax

 jmp L1

L2:

 ret

Instruction %rdi (hex) %eax (decimal)

movl 0x1000 0

testq

jz

Address Value

0x1000 0x1030

0x1008 0x1020

0x1010 0x1000

0x1018 0x0000

0x1020 0x1030

0x1028 0x1008

0x1030 0x0000

0x1038 0x1038

0x1040 0x1048

0x1048 0x1040

Part 2: Follow the execution of foo in assembly, where 0x1000 is passed in to %rdi

Write the values of %rdi and %eax in the columns. If the value doesn’t change, you can leave it blank

The GNU Debugger (GDB)

The GNU Debugger is a powerful debugging tool that will be critical to Lab 2 and Lab 3 and is a useful tool to know
as a programmer moving forward. There are tutorials and reference sheets available on the course webpage, but
the following tutorial should get you started with the basics:

GDB Tutorial:

1) Download calculator.c from the class webpage if you didn’t already have it from Section 1:
 > wget https://courses.cs.washington.edu/courses/cse351/17au/sections/01/code/calculator.c

2) Compile the file with debugging symbols (–g flag):

 > gcc –g –o calculator calculator.c

3) Load the binary (executable) into GDB. This will spit out a bunch of information (e.g. version, license).

 > gdb calculator

4) Inside of GDB, use the run command (run or just r) to execute your program. By default, this will continue until

an error or breakpoint is encountered or your program exits.

a. Command-line arguments can be passed as additional arguments to run:
 (gdb) run 3 4 +

b. To step through the program starting at main() instead, use the start command (start or just sta):
 (gdb) start

5) To view source code while debugging, use the list command (list or just l).

a. You can give list a function name (“list <function>”) to look at the beginning of a function.
 (gdb) list main

b. You can give list a line number (“list <line>”) to look at the lines around that line number, or provide a
specific range (“list <start>, <end>”).
 (gdb) list 45

 (gdb) list 10, 15

c. “list” will display the next 10 lines of code after whatever was last displayed and
“list –” will display the previous 10 lines of code before whatever was last displayed.

6) To view assembly code while debugging, use the disassemble command (disassemble or just disas).

a. “disas” will display the disassembly of the current function that you are in.

b. You can also disassemble specific functions.
 (gdb) disas main

 (gdb) disas print_operation

7) Create breakpoints using the break command (break or b)

a. A breakpoint will stop program execution before the shown instruction has been executed!

b. You can create a breakpoint at a function name, source code line number, or assembly instruction
address. The following all break at the same place:
 (gdb) break main

 (gdb) break 34

 (gdb) break *0x4005d5

c. Each break point has an associated number. You can view your breakpoints using the info command
(info or just i) and then enable (enable or just en) or disable (disable or just dis) specific ones.
 (gdb) info break

 (gdb) disable 3

 (gdb) enable 3

x86-64

C

8) Navigating source code within GDB is done while program execution is started (run or start), but halted (e.g. at
a breakpoint).

a. Use the next command (next or just n) to execute the next # of lines of source code and then break
again. This will complete (“step over”) any function calls found in the lines of code.
 (gdb) next

 (gdb) next 4

b. Use the step command (step or just s) to execute the next # of lines of source code and then break

again. This will step into any function calls found in the lines of code.
 (gdb) step

 (gdb) step 4

c. Use the “next instruction” command (nexti or just ni) to execute the next # of lines of assembly code
and then break again. This will complete (“step over”) any function calls.
 (gdb) nexti

 (gdb) nexti 4

d. Use the “step instruction” command (stepi or just si) to execute the next # of lines of assembly code and

then break again. This will step into any function calls.
 (gdb) stepi

 (gdb) stepi 4

e. Use the finish command (finish or just fin) to step out of the current function call.

f. Use the continue command (continue or just c) to resume continuous program execution (until next
breakpoint is reached or your program terminates).

9) You can print the current value of variables or expressions using the print command (print or just p):

a. The print command can take an optional format specifier: /x (hex), /d (decimal), /u (unsigned), /t
(binary), /c (char), /f (float)
 (gdb) print /t argc

 (gdb) print /x argv

 (gdb) print /d argc*2+5

 (gdb) print /x $rax

b. The display command (display or just disp) is similar, but causes the expression to print in the specified
format every time the program stops.

10) You can terminate the current program run using the kill command (kill or just k). This will allow you to

restart execution (run or start) with your breakpoints intact.

11) You can exit GDB by either typing Ctrl-D or using the quit command (quit or just q)

C

x86-64

