W UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Autumn 2018

WHEN Wil WE FORGET?

BASED ON S (OENSUs BUREAV

Memory Allocation | NATONPL. FUPULATON FIRIECTONS
PSEIMING WE DONT REMEMBER CUUTURAL
CSE 351 Autumn 2018 EVENTS FROM BERORE AGE. 5 R 6
Br THIS | THE MAJORITY OF AMERICANS
YEAR: | WILL BE TOOYONG TO REMEMBER:
Instructor: 206 | FETURN OF THE JEDY RELEPSE.
. . 2017 | THE FIRST APRLE MAONTOSH
Justin Hsia 208 | New o
08 | CHAUEMGER
Teaching Assistants: 2020 | CHERNOBYL
221 | BAK MONDAY
Akshat Aggarwal 2022 | TiE ReneAn PRESDENGY
An Wang 20723 | THE BeRUN WAL
2024 | HAMMERTME
An.drew !—Iu 2025 | THE SoviEr UNON
Brian Dali 20% | THE LA RioTS
Britt Henderson 2027 | LORENA BOBRITT
Shi 128 | THE FORREST GUMP RELEPSE.
James Shin 2029 | THE RWANDAN GENOCIDE
Kevin Bi 2030 | OF SIMPSON'S TRIAL
Kory Watson 238 | ATIME REFORE FACEROOK,
. 1239 | VHV's Z LovE THE s
Riley Germundson 2040 | HORRCANE. KATRINA
Sophie Tian 2041 | THE PUNET Pwo
Teagan Horkan 204z | THE: FIRST FHONE
Adapted from soq7 | ANYTHING D’BAW?A%ING
https://xkcd.com/1093/ YOU DO ToDAY




W UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Autumn 2018

Administrivia

+» Lab 4 due tonight
+» Homework 5 due Friday

» Lab 5 (on Mem Alloc) released tomorrow, due 12/8

» Final Exam: Wed, 12/12, 12:30-2:20 pm in KNE 120
= Review Session: Sun, 12/10, 5-7 pm in EEB 105
= Cumulative (midterm clobber policy applies)

" You get TWO double-sided handwritten 8.5X11” cheat
sheets

- Recommended that you reuse or remake your midterm cheat sheet



W UNIVERSITY of WASHINGTON

Roadmap

L24: Memory Allocation |

CSE351, Autumn 2018

Memory & data
Integers & floats
x86 assembly
Procedures & stacks
Executables

Arrays & structs
Memory & caches
Processes

Virtual memory
Memory allocation
Javavs. C

C: Java:
car *c = malloc(sizeof (car)) Car ¢ = new Car();
c->miles = 100; c.setMiles (100) ;
c->gals = 17; c.setGals(17);
float mpg = get mpg(c); float mpg =
free(c); c.getMPG () ;
Assembly get_mpg:
. pushqgq Srbp
language' movq Srsp, %rbp
popg srbp
ret i
\ 4
Machine 0111010000011000
d . 100011010000010000000010
coge. 1000100111000010
110000011111101000011111
Computer

system:




W UNIVERSITY of WASHINGTON L24: Memory Allocation |

Multiple Ways to Store Program Data

CSE351, Autumn 2018

+ Static global data
" Fixed size at compile-time

= Entire lifetime of the program | veid foo(int n) {

int tmp;
(loaded from executable) = P
/é?lnt local array[n];

int array[1024];

= Portion is read-only
(e.g. string literals) int* dyn =

« Stack-allocated data }

(int*)malloc(n*sizeof (int)) ;

" Local/temporary variables

« Can be dynamically sized (in some versions of C)

= Known lifetime (deallocated on return)

< Dynamic (heap) data
= Size known only at runtime (i.e. based on user-input)
= Lifetime known only at runtime (long-lived data structures)



W UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Autumn 2018

Memory Allocation

<~ Dynamic memory allocation
" Introduction and goals

L)

= Allocation and deallocation (free)
" Fragmentation

>

Explicit allocation implementation

L)

= Implicit free lists
= Explicit free lists (Lab 5)
= Segregated free lists

>

» Implicit deallocation: garbage collection

o

Common memory-related bugs in C



W UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Autumn 2018

Dynamic Memory Allocation

+» Programmers use dynamic memory allocators to
acquire virtual memory at run time User stack

" For data structures whose size f ‘
(or lifetime) is known only at runtime Heap (viamalloc)

n Manage the heap Of a process’ Uninitialized data (.bss)

virtual memorv: Initialized data (. data)
y: Program text (. text)

+ Types of allocators

% Explicit allocator: programmer allocates and frees space
« Example: mallocand freeinC

= Implicit allocator: programmer only allocates space (no free)

- Example: garbage collection in Java, Caml, and Lisp




W UNIVERSITY of WASHINGTON L24: Memory Allocation |

Dynamic Memory Allocation

CSE351, Autumn 2018

+ Allocator organizes heap as a collection of variable-

sized blocks, which are either allocated or free

= Allocator requests pages in the heap region; virtual memory
hardware and OS kernel allocate these pages to the process

= Application objects are typically smaller than pages, so the
allocator manages blocks within pages

- (Larger objects handled too;
ignored here)

User stack

s ¥

Heap (viamalloc)

Uninitialized data (. bss)

Initialized data (. data)

Program text (. text)

Top of heap
(brk ptr)



W UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Autumn 2018

Allocating Memory in C

«+ Needto #include <stdlib.h>

+ void* malloc(size t size)

= Allocates a continuous block of size bytes of juninitialized memory

= Returns a pointer to the beginning of the allocated block; NULL indicates
failed request

. TypicaIIy o an 8-byte (x86) or 16-byte (x86-64) boundary

« Returns NULL if allocation failed (also sets errno) or size==

————

= Different blocks not necessarily adjacent

+» Good practices:

" ptr = (int*) malloc(n*sizeof (int)) ;

- sizeof makes code more portable

- void* is implicitly cast into any pointer type; explicit typecast will help you
catch coding errors when pointer types don’t match



W UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Autumn 2018

Allocating Memory in C

«+ Needto #include <stdlib.h>

+ void* malloc(size t size)
= Allocates a continuous block of size bytes of uninitialized memory
= Returns a pointer to the beginning of the allocated block; NULL indicates
failed request
- Typically aligned to an 8-byte (x86) or 16-byte (x86-64) boundary

Returns NULL if allocation failed (also sets errno) or size==

= Different blocks not necessarily adjacent

+ Related functions:
" void* calloc(size_t nitems, size t size)
“Zeros out” allocated block
" void* realloc(void* ptr, size t size)
- Changes the size of a previously allocated block (if possible)

" void* sbrk(intptr t increment)
Used internally by allocators to grow or shrink the heap



W UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Autumn 2018

Freeing Memory in C

+ Needto #include <stdlib¢ h> 4 tort
- . doegn C,L\ar\sc, he Pbm er.
< VOld free (VOld* ﬁ (nou Ponf‘\.s to deallo(ger MEMDVY)

= Releases whole block pointed to by p to the pool of available memory

= Pointer p must be the address originally returned by m/c/realloc
(i.e. beginning of the block), otherwise system exception raised

= Don’t call free on a block that has already been released or on NULL

10



CSE351, Autumn 2018

W UNIVERSITY of WASHINGTON L24: Memory Allocation |

Memory Allocation Example in C

void foo(int n, int m) {
int i1, *p;

p = (int*) malloc(n*sizeof (int)); /* allocate block of nints */
if (p == NULL) { /* check for allocation error */
perror ("malloc") ; <= prints message related to errno
exit (0);
}
for (1=0; 1i<n; 1++) /* initialize int array */
pli] = 1;
/* add space for m ints to end of p block */
p = (int¥*) realloc(p,{Eim)*sizeof(int));
if (p == NULL) { /* check for allocation error */
perror ("realloc") ;
exit (0);
}
for (i=n; i < n+m; i++) /* initialize new spaces */
pli] = 1i;
for (i=0; i<n+m; 1i++) /* print new array */
printf ("sd\n", pl[il);
free (p); /* freep */

11



W UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Autumn 2018

=1 box = 8 bytes

Notation

+» We will draw memory divided into boxes
= Each box can hold an 64 bits/8 bytes

= Allocations will be in sizes that are a multiple of boxes
(i.e. multiples of 8 bytes)

" Book and old videos use 4-byte word instead of 8-byte box

. Holdover from 32-bit version of textbook ()

\ J \ y)
) T
Allocated block Free block
(4 boxes) (3 boxes) Free box
32 bytes 24 bytes

Allocated box

12



W UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Autumn 2018

= 8-byte box

Allocation Example

pl = malloc(32)

p2 = malloc (40)

p3 = malloc (48)

free (p2)

—_— ——

AN ,AerAj aNn a\lo(aTQW\/‘

P\ dcemen Pol?cy

p4d = malloc(16)

13



W UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Autumn 2018

Implementation Interface

+» Applications
" Canissue arbitrary sequence of malloc and free requests
" Must never access memory not currently allocated

" Must never free memory not currently allocated
- Also must only use free with previously malloc’ed blocks

+ Allocators
= Can’t control number or size of allocated blocks
" Must respond immediatelytomalloc (Contt reorder o buffer)
" Must allocate blocks from free memory (bocks cant overlap)
= Must align blocks so they satisfy all alighment requirements
& Can’t move the allocated blocks (dedeeymetation e \lgme d)

Lowd \oreglc Your Pd\v\era .

14



W UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Autumn 2018

Performance Goals

+» @oals: Given some sequence of malloc and free
requests Ry, R4, ..., R, ..., Rj,_1, maximize throughput
and peak memory utilization

" These goals are often conflicting

1) Throughput
" Number of completed requests per unit time

= Example:

- 1f 5,000 malloc calls and 5,000 free calls completed in 10 seconds,
then throughput is 1,000 operations/second

15



W UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Autumn 2018

Performance Goals

+ Definition: Aggregate payload P,
" malloc (p) resultsin a block with a payload of p bytes

= After request R;, has completed, the aggregate payload P,
is the sum of currently allocated payloads

+ Definition: Current heap size Hy,

= Assume Hj, is monotonically non-decreasing
- Allocator can increase size of heap using sbrk

2) Peak Memory Utilization
= Defined as Uy, = (ma}cx P;)/H, after k+1 requests
L<

" Goal: maximize utilization for a sequence of requests

" Why is this hard? And what happens to throughput?
pack fast or ‘Oaclt +fal'\+?

16



W UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Autumn 2018

Fragmentation

+» Poor memory utilization is caused by fragmentation

= Sections of memory are not used to store anything useful,
but cannot satisfy allocation requests

= Two types: internal and external

+ Recall: Fragmentation in structs

" |Internal fragmentation was wasted space inside of the struct
(between fields) due to alignment

= External fragmentation was wasted space between struct
instances (e.g. in an array) due to alignment

+» Now referring to wasted space in the heap inside or
between allocated blocks

17



W UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Autumn 2018

Internal Fragmentation

+» For a given block, internal fragmentation occurs if
payload is smaller than the block

block
A
I B B I
Interna Interna
fragmentation ~ | ' payload ' fragmentation
O J A
+» Causes: — |

/

" Padding for alignment purpOS& o
" Overhead of maintaining/heap data structures| (inside block,
outside payload) ‘

= Explicit policy decisions (e.g. return a big block to satisfy a
small request)  Haster Fhraghpdt 4> sl indidually size vy block

+ Easy to measure because only depends on past
requests

18



W UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Autumn 2018

= 8-byte box

External Fragmentation

+» For the heap, external fragmentation occurs when
allocation/free pattern leaves “holes” between blocks
®= That is, the aggregate payload is non-continuous

= (Can cause situations where there is enough aggregate heap memory to

satisfy request, but no single free block is large enough cnd °“T heap

pl = malloc(32)

P2 = malloc (40)

p3 = malloc (48)

octerns A /
free (p2) i ) ﬂ*g

40 bytes L e !
pd4d = malloc (48) Oh no! (What would h?s(open now?)

56 B total ‘Grte, bd hol configuous )y
+» Don’t know what future requests will be

= Difficult to impossible to know if past placements will become
problematic

19



W UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Autumn 2018

Peer Instruction Question

+» Which of the following statements is FALSE?
= \ote at http://PollEv.com/justinh

A.

B.

Temporary arrays should not be allocated on the
showd allocate on the Stack
Heap

malloc returns an address filled with garbage
o mllofdfei Em‘y; no intializoton
Peak memory utilization is a measure of both

. . 's a'e m lbﬁd}\
internal and external fragmentation i%:if, Ry

Jus‘t returns NULL

. An allocation failure will cause your program to &

stop

We’re lost...

20



W UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Autumn 2018

"'OAay

'\rk* {PC_'_‘AYQ_

Implementation Issues

» How do we know how much memory to free given
just a pointer?

» How do we keep track of the free blocks?

» How do we pick a block to use for allocation (when

many might fit)?

+» What do we do with the extra space when allocating

a structure that is smaller than the free block it is
placed in?

+» How do we reinsert a freed block into the heap?

21



W UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Autumn 2018

= 8-byte box (free)

Knowing How Much to Free _ g-byte box (allocated)

« Standard method

= Keep the length of a block in the box preceding the block
- This box is often called the header field or header

= Requires an extra box for every allocated block

18]0)
p0 = malloc (32) 40
block size data

free (p0)

22



W UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Autumn 2018

= 8-byte box (free)

Keeping Track of Free Blocks _ g-byte box (allocated)

1) Implicit free list using length — links all blocks using math

e ———

= No actual pointers, and must check each block if allocated or free

- -y — oy,
- ~ P e - ~ o~

- O Ao~ S a
Fﬁ\ 32 48 16

—
—k

add Pb'm""eP
2) Explicit free list among only the free blocks, using pointers

o (linked List)
porer
40 K\Zs 16

3) Segregated free list

= Different free lists for different size “classes”

4) Blocks sorted by size

= Can use a balanced binary tree (e.g. red-black tree) with pointers within

each free block, and the length used as a key
23



W UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Autumn 2018
address is muttige st =0l 1000

°« o o e.g. with 8-byte alignment,
Implicit Free Lists possible values for sze:

1 box 1 i 00001000 = 8 bytes
N - 00010000 = 16 bytes

+» For each block we need: size, is-allocated? | 00011000 - 24 bytes

" Could store using two boxes, but wasteful -4

+ Standard trick
= |f blocks are aligned, some low-order bits of size are always O

= Use lowest bit as an allocated/free flag (fine as long as aligning to K>1)

" When reading size, must remember to mask out this bit!

8 bytes
A
g ‘\
Format of <\ size aDa = 1: allocated block If x is first box (header):
allocated and a=0: free block Fo
free blocks: Xx = size | a;
payload size: block size (in bytes)

payload: application data
optional (allocated blocks only) size = x & ~1;
padding

24



W UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Autumn 2018

Implicit Free List Example

+ Each block begins with header (size in bytes and allocated bit)

+» Sequence of blocks in heap (size|allocated):

16]0,32]1,64/0, 32 1
33 « actual header data

Start of heap vk block.
— ~ Free box
321 |32 o) Allocated box
6 L L = Allocated box

v | | | | | unused

16 bytes = 2 box alignment

+» 16-byte alignment for payload

= May require initial padding (internal fragmentation)
" Note size: paddingis considered part of previous block

+ Special one-box marker (0|1) marks end of list

= Zero size is distinguishable from all other blocks
25



W UNIVERSITY of WASHINGTON L24: Memory Allocation |

Implicit List: Finding a Free Block

% First fit

CSE351, Autumn 2018

(*p) gets the block
header

(*p & 1) extracts the
allocated bit

(*p & -2) extracts

the size

= Search list from beginning, choose first free block that fits:

p = heap start;
while ((p < end) && // not past end
((*p & 1) || // already allocated
(*p <= len))) { // too small equivalest to pointer arthmelid widly
p=p+ (*p & -2); // go to next block (UNSCALED +) v ¥
} // pJpoints to selected block or end
LE, 1 1.
OC’VL) atFer—oop—extTs

= Can take time linear in total number of blocks

" |n practice can cause “splinters” at beginning of list

321

Ki
alocat er

Free box

Allocated box

Allocated box

unused

26



W UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Autumn 2018

Implicit List: Finding a Free Block

+» Next fit

= Like first-fit, but search list starting where previous search
finished

= Should often be faster than first-fit: avoids re-scanning
unhelpful blocks

= Some research suggests that fragmentation is worse

% Best fit

= Search the list, choose the best free block: large enough
AND with fewest bytes left over

= Keeps fragments small—usually helps fragmentation
= Usually worse throughput

27



