W UNIVERSITY of WASHINGTON L21: Virtual Memory | CSE351, Autumn 2018

Well I'm having trouble opening
new tabs, And the others are 7 Hmm. Well |
having problems too, The IDE, i Guess i+ would be

Virtual Memory | o o) N oo BT
CSE 351 Autumn 2018 . C e B __

Instructor:
Justin Hsia

N
N ,
g - MCLK. hare'sanﬁxtmit#gigs.d -
Teaching Assistants: S | \there arent any more siots et /.
Akshat Aggarwal £ (hari do)
An Wang < DN
Andrew Hu 5
~~
Brian Dai g
. £
Britt Henderson S
o C
James Shin ol G e g
Kevin Bi 3 - i
'\Q'. Yeoh, whot
Kory Watson = B e
Riley Germundson
Sophie Tian

Teagan Horkan

CommitStrip.com

W UNIVERSITY of WASHINGTON L21: Virtual Memory |

Administrivia

+» Homework 4 due tonight
+» Lab 4 due after Thanksgiving (11/26)

« Next week’s section: “Virtual section”
= \Worksheet and solutions released like normal

= Videos of Justin working through problems will also be
released

CSE351, Autumn 2018

W UNIVERSITY of WASHINGTON L21: Virtual Memory | CSE351, Autumn 2018

Processes

+» Processes and context switching
+» Creating new processes

" fork(),exec* (),andwait ()

« Zombies

W UNIVERSITY of WASHINGTON L21: Virtual Memory | CSE351, Autumn 2018

Zombies

+ A terminated process still consumes system resources
= Various tables maintained by OS
= Called a “zombie” (a living corpse, half alive and half dead)

+» Reaping is performed by parent on terminated child

" Parent is given exit status information and kernel then
deletes zombie child process

+» What if parent doesn’t reap?
= |f any parent terminates without reaping a child, then the
orphaned child will be reaped by init process (pid == 1)
- Note: on recent Linux systems, init has been renamed systemd

" In long-running processes (e.g. shells, servers) we need
explicit reaping

CSE351, Autumn 2018

W UNIVERSITY of WASHINGTON L21: Virtual Memory |

wait: Synchronizing with Children

+ 1nt wait (int *child status)

= Suspends current process (i.e. the parent) until one of its
children terminates

" Return value is the Pl—D—]of the child process that terminated
« On successful return, the child process is reaped

" Ifchild status !=NULL, thenthe *child status

value indicates why the child process terminated
- Special macros for interpreting this status — see man wait (2)

+» Note: If parent process has multiple children, wait
will return when any of the children terminates
" waitpid can be used to wait on a specific child process

W UNIVERSITY of WASHINGTON L21: Virtual Memory | CSE351, Autumn 2018

wait: Synchronizing with Children

void fork wait ()
int child status;

if (fork() == 0) {
printf ("HC: hello from child\n"); [
exit (0); ;

} else {

printf ("HP: hello from parent\n");

wait (&child status);

printf ("CT: child has terminated\n"); }PWQJ*
}

printf ("Bye\n") ;)
} forks.c
HC exit
>@ >@
printf Feasible output: Infeasible output:
HC HP HP

CT HP HC CT

HP & Bye CT CT Bye

® >® > >®

fork printf wait printf Bye B‘/f HC

W UNIVERSITY of WASHINGTON

L21: Virtual Memory | CSE351, Autumn 2018

Example: Zombie

linux> ./forks 7 &
[1] 6639
Running Parent,
Terminating Child,
ps

TTY TIME
ttyp9 00:00:00
ttyp9 00:00:03
ttyp9 00:00:00
ttyp9 00:00:00

PID = 6639

PID = 6640

linux>
PID
6585
6639
6640

CMD
tcsh
forks

0641
linux> kill 6639

s

[1] Terminated
linux> ps

PID TTY

6585 ttyp9

6642 ttyp9

forks <defunct>

void fork7 () {
if (fork() == 0) {
/* Child */
printf ("Terminating Child, PID = %d\n",
getpid());
exit (0) ;
} else {
printf ("Running Parent,
getpid());
(1); /* Infinite loop */

PID = %d\n",

while

T rmrenr\‘l persists

forks.c

+ ps shows child process as
“defunct”

+ Killing parent allows child to be
reaped by init

W UNIVERSITY of WASHINGTON

Example:
Non-terminating

Child

linux> ./forks 8
Terminating Parent,
Running Child, PID = 6676
linux> ps
PID TTY
6585 ttyp9
6676 ttyp9

TIME CMD

6677 ttyp9
linux> kill
linux> ps

PID TTY

6585 ttyp9

6678 ttyp9

:00:00 ps

L21: Virtual Memory | CSE351, Autumn 2018

void fork8 () {
if (fork() == 0) {
/* Child */
printf ("Running Child,
getpid());
while (1); /* Infinite loop */
} else f{ R— child persists
printf ("Terminating Parent,
getpid());
exit (0);

PID = %d\n",

PID = %d\n",

} forks.c

:00:00 tcsh
:00: 06 forks

PID = 6675

+ Child process still active even
though parent has terminated

+ Must kill explicitly, or else will
keep running indefinitely

W UNIVERSITY of WASHINGTON L21: Virtual Memory | CSE351, Autumn 2018

Process Management Summary

fork makes two copies of the same process (parent & child)

= Returns different values to the two processes

» exec* replaces current process from file (new program)

" Two-process program:
« First fork ()
- if (pid == 0) { /* child code */ } else { /* parent code */}

" Two different programs:
« First fork ()
- if (pid == 0) { execv(...) } else { /* parent code */}

» walt orwailtpid used to synchronize parent/child execution
and to reap child process

W UNIVERSITY of WASHINGTON

L21: Virtual Memory |

Roadmap

CSE351, Autumn 2018

C: Java: Memory & data
car *c = malloc(sizeof (car)); Car c¢c = new Car{(); Integers & floats
c->miles = 100; c.setMiles (100) ; x86 assembly
c->gals = 17; c.setGals (17); Procedures & stacks
float mpg = get mpg(c); float mpg = Executables
free (c); c.getMPG () ; Arrays & structs
~ & Memory & caches
Assembly <;Jet_mpg}:1] Processes
. pushq srbp .
language: movq 4rsp, rbp Virtual memory
.. Memory allocation
popq srbp Javavs. C
ret i
\ 4
Machine 0111010000011000
code: 100011010000010000000010
: 1000100111000010
110000011111101000011111
Computer
system:

10

W UNIVERSITY of WASHINGTON L21: Virtual Memory |

Virtual Memory (VM¥*)

+» Overview and motivation

» VM as a tool for caching

+» Address translation

» VM as a tool for memory management
+» VM as a tool for memory protection

Warning: Virtual memory is pretty complex,

but crucial for understanding how processes
work and for debugging performance

*Not to be confused with “Virtual Machine” which is a whole other thing.

CSE351, Autumn 2018

11

W UNIVERSITY of WASHINGTON L21: Virtual Memory | CSE351, Autumn 2018

Memory as we know it so far... is virtual!

+ Programs refer to virtual memory addresses OXFF-eF

" movqg (%rdil), Srax

" Conceptually memory is just a very large array of bytes
= System provides private address space to each process

+ Allocation: Compiler and run-time system
" Where different program objects should be stored
= All allocation within single virtual address space

<« But...

= We probably don’t have 2% bytes of physical memory

= We certainly don’t have 2% bytes of physical memory
for every process

= Processes should not interfere with one another 0x00-+--+-0

Except in certain cases where they want to share code or data

12

W UNIVERSITY of WASHINGTON L21: Virtual Memory | CSE351, Autumn 2018

Problem 1: How Does Everything Fit?

64-bit virtual addresses can address Physical main memory offers
several exabytes a few gigabytes
(18,446,744,073,709,551,616 bytes) (e.g. 8,589,934,59%\bytes)

(Not to scale; physical memory would be smaller
than the period at the end of this sentence compared
to the virtual address space.)

stailler Hran Fhis !

1 virtual address space per process,
with many processes...

13

L21: Virtu

CSE351, Autumn 2018

W UNIVERSITY of WASHINGTON

Problem 2:

We have multiple
processes:

Process 1
Process 2
Process 3

Process n

al Memory |

Memory Management

Each process has...

stack
heap
.Lext

.data

What goes
where?

Physical main memory

14

W UNIVERSITY of WASHINGTON L21: Virtual Memory | CSE351, Autumn 2018

Problem 3: How To Protect

Physical main memory
o >
Process 7

Problem 4: How To Share?

Physical main memory

15

W UNIVERSITY of WASHINGTON L21: Virtual Memory | CSE351, Autumn 2018

How can we solve these problems?

« “Any problem in computer science can be solved by adding
another level of indirection.” - pavid Wheeler, inventor of the subroutine

L)

Pl e
................. — [.

W|thout |ndIFECtIOn P2 ... 4 _— Thlng

P3 7; NewThing

P1
With Indirection -

P2 o — | | Thing

p3—/ e _

*1 |NewThing

What if | want to move Thing?

16

W UNIVERSITY of WASHINGTON L21: Virtual Memory | CSE351, Autumn 2018

Indirection

« Indirection: The ability to reference something using a name,
reference, or container instead of the value itself. A flexible
mapping between a name and a thing allows changing the
thing without notifying holders of the name.

— ® Adds some work (now have to look up 2 things instead of 1)

”" But don’t have to track all uses of name/address (single source!)

« Examples:

" Phone system: cell phone number portability
= Domain Name Service (DNS): translation from name to IP address
= Call centers: route calls to available operators, etc.

= Dynamic Host Configuration Protocol (DHCP): local network address
assignment

17

W UNIVERSITY of WASHINGTON L21: Virtual Memory | CSE351, Autumn 2018

Indirection in Virtual Memory

Virtual memory

>
Process 1

Physical memory

mapping -

N
A

Virtual memory

VA

_—

Process n

+ Each process gets its own private virtual address space
+ Solves the previous problems!

18

W UNIVERSITY of WASHINGTON L21: Virtual Memory | CSE351, Autumn 2018

ceiling functivn
Address Spaces s r\i‘/ Croond)
n = -
« Virtual address space: Setof N = ggvirtual addr
- {O) 1/ 2/ 3/ ey N_l} bV1e5 j M = rg/o—g.z,v{‘

+ Physical address space: Set of M = 2™ physical addr
= {0,1,2,3,.. M-1}

+ Every byte in main memory has:
" one physical address (PA)
= zero, one, or more virtual addresses (VAs)

A
j (IL wek Ly many procesie §
(AN S el wek by sne pracess

19

W UNIVERSITY of WASHINGTON L21: Virtual Memory |

Mapping

+ A virtual address (VA) can be mapped to either physical
memory or disk

®" Unused VAs may not have a mapping

As from different processes may map to same location in memory/disk

Process 1’s Virtua
Address Space

Physical
Memory

Process 2’s Virtual
Address Space

Disk

SLrirs

ﬁ “Swap Space”

20

W UNIVERSITY of WASHINGTON L21: Virtual Memory | CSE351, Autumn 2018

A System Using Physical Addressing

Main memory

0:
1:
2:
Physical address (PA) 3: w
CPU > 4.
v Ox4 5: |
6: :
7:)
8:
M-1:

Data (int/float)

+ Used in “simple” systems with (usually) just one process:

" Embedded microcontrollers in devices like cars, elevators, and digital
picture frames

21

W UNIVERSITY of WASHINGTON L21: Virtual Memory | CSE351, Autumn 2018

A System Using Virtual Addressing

Main memory

0:
CPU Chip 1:
Virtual address Physical address g

CPU VA _ 5| mmu PR 5 4 '
0x4100 2 I

A Q = % -

n-bity ra-bih 6:

7:)
8:

Memory Management Unit

M-1

Data (int/float)

+» Physical addresses are completely invisible to programs
= Used in all modern desktops, laptops, servers, smartphones...
" One of the great ideas in computer science

22

W UNIVERSITY of WASHINGTON L21: Virtual Memory |

Why Virtual Memory (VM)?

+ Efficient use of limited main memory (RAM)

= Use RAM as a cache for the parts of a virtual address space
- Some non-cached parts stored on disk

- Some (unallocated) non-cached parts stored nowhere

= Keep only active areas of virtual address space in memory
- Transfer data back and forth as needed

X/

+ Simplifies memory management for programmers
= Each process “gets” the same full, private linear address space
+ |solates address spaces (protection)

" One process can’t interfere with another’s memory
- They operate in different address spaces
= User process cannot access privileged information

- Different sections of address spaces have different permissions

23

CSE351, Autumn 2018

W UNIVERSITY of WASHINGTON L21: Virtual Memory | CSE351, Autumn 2018

VM and the Memory Hierarchy

+ Think of virtual memory as array of N = 2" contiguous bytes

+ Pages of virtual memory are usually stored in physical
memory, but sometimes spill to disk . %gz P!
= Pages are another unit of aligned memory (size is P = 2P bytes)

= Each virtual page can be stored in any physical page (no fragmentation!)

no ué.s'l'éa\ Sr:ace /66\()5

Virtual memory Physical memory
0
0 Empty PPO
VP 0 | Unallocated PP 1
VP 1| 1" mem >

Empty

in disk

Unallocated \ / Empty

. PP 2mP-1

(s,dd) so3ed |eaisAyd

Virtual pages (VP's)

VP 2mp-1

“Swap Space”

24

W UNIVERSITY of WASHINGTON L21: Virtual Memory | CSE351, Autumn 2018

or: Virtual Memory as DRAM Cache for Disk

+ Think of virtual memory as an array of N = 2™ contiguous
bytes stored on a disk

+ Then physical main memory is used as a cache for the
virtual memory array

" These “cache blocks” are called pages (size is P = 2P bytes)

Virtual memory Physical memory

0

VP O | Unallocated
0

VP 1 | Cached \ Empty PP O
Uncached PP 1

Unallocated Empty
Cached
Uncached Empty

Cached PP 2m-p-1
VP 2np-1 ‘ Uncached A M-

Physical pages (PPs)
cached in DRAM

Virtual pages (VPs)
“stored on disk”
25

W UNIVERSITY of WASHINGTON L21: Virtual Memory | CSE351, Autumn 2018

Memory Hierarchy: Core 2 Duo Not drawn to scale

SRAM DRAM
Static Random Access Memory Dynamic Random Access Memory
A A
! ~4mp 1! ~8 GB ‘ ~500 GB
L2 Mai -
L1 ain
I-cache unified D | S k

o Memor
a cache Y
p— 32 KB : g : - i =
L1 %

Throughput: 16 B/cycle 8 B/cycle 2 B/cycle 1 B/30 cycles
Latency: 3 cycles 14 cycles 100 cycles millions
Miss Penalty Miss Penalty
(latency) (latency)
33x 10,000x

26

W UNIVERSITY of WASHINGTON L21: Virtual Memory | CSE351, Autumn 2018

Virtual Memory Desigh Consequences

+» Large page size: typically 4-8 KiB or 2-4 MiB
= Can be up to 1 GiB (for “Big Data” apps on big computers)
" Compared with 64-byte cache blocks

« Fully associative (physical memory is singl set)
= Any virtual page can be placed in any physical page
= Requires a “large” mapping function — different from CPU caches

+ Highly sophisticated, expensive replacement algorithms in OS

" Too complicated and open-ended to be implemented in hardware

% IV\Vrite-bacﬂrather than write-through (teade &y pages)

" Really don’t want to write to disk every time we modify something in
memory

= Some things may never end up on disk (e.g. stack for short-lived process)

27

W UNIVERSITY of WASHINGTON L21: Virtual Memory | CSE351, Autumn 2018

Why does VM work on RAM/disk?

+ Avoids disk accesses because of locality

= Same reason that L1 /L2 / L3 caches work

+» The set of virtual pages that a program is “actively”
accessing at any point in time is called its working set

= |f (working set of one process < physical memory):
- Good performance for one process (after compulsory misses)

" If (working sets of all processes > physical memory):

. Ehrashi@ Performance meltdown where pages are swapped
between memory and disk continuously (CPU always waiting or
paging)

- This is why your computer can feel faster when you add RAM

28

W UNIVERSITY of WASHINGTON L21: Virtual Memory | CSE351, Autumn 2018

Virtual Memory (VM)

>

Overview and motivation

L)

o®

VM as a tool for caching
Address translation

*

/
*

» VM as a tool for memory management

0‘0

VM as a tool for memory protection

29

W UNIVERSITY of WASHINGTON

L21: Virtual Memory |

Address Translation

How do we perform the virtual
— physical address translation?

Main memory

0:
CPU Chip 1:
Virtual address Physical address g
(VA) N\ (pa) :
CPU > MMU > 4:
0x4100 V ox4 c.
X :
6:
7:
8:
Memory Management Unit
M-1:

Y

CSE351, Autumn 2018

Data (int/float)

30

W UNIVERSITY of WASHINGTON L21: Virtual Memory | CSE351, Autumn 2018

Address Translation: Page Tables
VPN width 'n-Pd—>we have prpajej in VA space prye s\ze 1>L’)"‘e}

+» CPU-generated address carLbe split intop: . & p= oy, P bt

- K—_A_/—\
n-bitaddress: | Virtual Page Number | Page Offset
J\V\O\'ij.f +O Y | lglock hurmber | block O_H‘J /"g)f' “(inej

= Request is Virtual Address (VA), want Physical Address (PA)
= Note that Physical Offset = Virtual Offset (page-aligned)

+ Use lookup table that we call the page table (PT)

= Replace Virtual Page Number (VPN) for Physical Page
Number (PPN) to generate Physical Address

" |Index PT using VPN: page table entry (PTE) stores the PPN
plus management bits (e.g. Valid, Dirty, access rights)

" Has an entry for every virtual page — why?
NO \baLku‘o‘For mpr\jS é ' conm be 6\,\\14’[\ r\ﬁ)

31

W UNIVERSITY of WASHINGTON L21: Virtual Memory | CSE351, Autumn 2018

Page Table Diagram

S page in RANT Physical memory Physi%ai/)page #
(DRAM) J N
Page Table VP 1 -
Virtual page # DRAM 0
VPN VI)
\ Valid PPN/Disk Addr VP 2 PP 1
o) pagePTE0: O
@(Ah&i\ vca PRJePTE ; _1_ (])- / — o
PTE2: 2[1 VP 4 PP 3
PTE3: 3]0
@,oaje m RAM PTE4: 4| 1 Virtual memory
PTES: 5| 0 (DRAM/disk)
® pase on disk PTEE: 6] 0
PTE7: 7] 1

B fade has 2" ortries! RN TSavp3
age tables stored in physical memory “~~__
" Too big to fit elsewhere — managed by MMU & OS \‘\‘ VP &

+» How many page tables in the system?

" One per process

32

W UNIVERSITY of WASHINGTON L21: Virtual Memory | CSE351, Autumn 2018

Page Table Address Translation

hanged o
Chan)
yd /0\ Covd% xT suircn

CP

Virtual address (VA) /

% Virtual page number (VPN) / Virtual page offset (VPO) n \or}l
[

Page table address Page table

for process 5 Valid PPN

Page table
base register
(PTBR)
|

N\

bk poge L= VPoprTo
folde o VPN eRfry

Valid bit = 0:
page not in memory <€

(fault)
page fau ! / ‘l’

Physical page number (PPN) / Physical page offset (PPO) m \o{’b'
In most cases, the MMU can Physical address (PA) /

perform this translation
without software assistance

33

W UNIVERSITY of WASHINGTON L21: Virtual Memory | CSE351, Autumn 2018

Page Hit

+» Page hit: VM reference is in physical memory

Page Table (DRAM) Physical memory
Virtual address Valid PPN/Disk Addr (DRAM)
pTEO [0 null] vwe1 PP O

1 VP 2

Y 1 VP 7 PP2
2 VP4 PP 3
0
0 Virtual memory

— > p1eQ)[1 (DRAM/disk)

) N S~ VP 3
Example: Page size =4 KiB=7'"B <= p=I2Lits= 3 hex Jigits pS

Virtual Addr: |0x00 %l b Physig%lAddr: Ox 2 Hoh E VP 6

VPN JeT ~_

) ven: e @PPN: 9

W UNIVERSITY of WASHINGTON L21: Virtual Memory | CSE351, Autumn 2018

Summary

+ Virtual memory provides:

= Ability to use limited memory (RAM) across multiple
processes

" |llusion of contiguous virtual address space for each process
" Protection and sharing amongst processes

+ Indirection via address mapping by page tables
= Part of memory management unit and stored in memory

= Use virtual page number as index into lookup table that
holds physical page number, disk address, or NULL
(unallocated page)

" On page fault, throw exception and move page from swap
space (disk) to main memory

35

W UNIVERSITY of WASHINGTON L21: Virtual Memory | CSE351, Autumn 2018

BONUS SLIDES

Detailed examples:

» wait () example
» waitpid () example

36

W UNIVERSITY of WASHINGTON

wait () Example

L21: Virtual Memory |

CSE351, Autumn 2018

+ If multiple children completed, will take in arbitrary order

+ Can use macros WIFEXITED and WEXITSTATUS to get

information about exit status

void forkl0 () {
pid t pid[N];
int 1i;
int child status;

else

for (1 = 0; 1 < N; 1++)
if ((pid[i] = fork()) == 0)
exit (100+1); /* Child */
for (1 = 0; 1 < N; 1++)
pid t wpid = wait(&child status);
if (WIFEXITED (Child_status))
printf ("Child %d terminated with exit status %d\n"
wpid, WEXITSTATUS (child status)):;

{

printf ("Child %d terminated abnormally\n", wpid):;

37

waitpid (): Waiting for a Specific Process

pid t waltpid(pid tpid,int &status,intoptions)

= suspends current process until specific process terminates
= various options (that we won’t talk about)

void forkll () {
pid t pid[N];
int 1i;
int child status;
for (i = 0; i < N; i++)
if ((pid[i] = fork()) == 0)
exit (100+1); /* Child */
for (1 = 0; 1 < N; i++) {
pid t wpid = waitpid(pid[i], &child status, 0);
if (WIFEXITED (Child_status))
printf ("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS (child status)):;
else

printf ("Child %d terminated abnormally\n", wpid):;

W UNIVERSITY of WASHINGTON L21: Virtual Memory | CSE351, Autumn 2018

38

