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Administrivia

+» Homework 4 due Friday (11/16)
+» Lab 4 released over the long weekend

= Cache parameter puzzles and code optimizations
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Write-back, write-allocate example

Contents of memory stored at address G

v
Cache G OxXxBEEF 0] < dirty bit

tag (there is only one set in this tiny cache, so the tag is the entire block address!)

In this example we are sort of
ignoring block offsets. Here a block
G OxBEEF holds 2 bytes (16 bits, 4 hex digits).

Memory F O0xCAFE

Normally a block would be much
bigger and thus there would be
multiple items per block. While only
one item in that block would be
written at a time, the entire line would
be brought into cache. 3
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Write-back, write-allocate example

mov OxXFACE, F

Cache G OxXxBEEF 0] < dirty bit

Memory F O0xCAFE

G OxBEEF
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Write-back, write-allocate example

mov OxXFACE, F

Cache F | 0xCAFE 0l I dirty bit

Step 1: Bring F into cache

Memory F O0xCAFE

G OxBEEF
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Write-back, write-allocate example

mov OxXFACE, F

Cache F | OxFACE 1| | dirty bit

Step 2: Write OxFACE
to cache only and set

dirty bit

Memory F O0xCAFE

G OxBEEF
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Write-back, write-allocate example

mov OxXFACE, F mov OXFEED, F
Cache F ] OxFACE 1] [ dirty bit
Write hit!
Write OXFEED to
cache only
Memory F O0xCAFE

G OxBEEF
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Write-back, write-allocate example

mov OxFACE, F mov OxXFEED, F mov G, $rax
Cache F ] OxFEED 1] € dirty bit
Memory F O0xCAFE

G OxBEEF
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Write-back, write-allocate example

mov OxFACE, F mov OxXFEED, F mov G, $Srax

Cache G OxXxBEEF 0] < dirty bit

1. Write F back to memory
since it is dirty

2. Bring G into the cache so

Memory F OXFEED we can copy it into $rax

G OxBEEF
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Peer Instruction Question

+» Which of the following cache statements is FALSE?
= \ote at http://PollEv.com/justinh

A. We can reduce compulsory misses by decreasing
our block size

B. We can reduce conflict misses by increasing
associativity

C. A write-back cache will save time for code with
good temporal locality on writes

D. A write-through cache will always match data
with the memory hierarchy level below it

E. We’re lost...

10
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Optimizations for the Memory Hierarchy

+» Write code that has locality!

= Spatial: access data contiguously

= Temporal: make sure access to the same data is not too far
apartin time

+» How can you achieve locality?

= Adjust memory accesses in code (software) to improve miss
rate (MR)

- Requires knowledge of both how caches work as well as your system’s
parameters

" Proper choice of algorithm
" Loop transformations

11



W UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Autumn 2018

Example: Matrix Multiplication

C A B
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C..—=> L H [EEEEe
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Matrices in Memory

«» How do cache blocks fit into this scheme?

" Row major matrix in memory:

COLUMN of matrix (blue) is spread —

among cache blocks shown in red
13
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Naive Matrix Multiply

# move along rows of A
for (1 = 0; 1 < n; 1++)
# move along columns of B
for (7 = 0;, 7 < n; J++)
# EACH k loop reads row of A, col of B
# Also read & write c(i,j) n times
for (k = 0; k < n; k++)
cli*ntj] += ali*ntk] * blk*n+]];

C(i,j) C(i,j) Ali,:)
[

1
m
X

B(:,j)
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Cache Miss Analysis (Naive) ['g”O””gJ

matrix c

+ Scenario Parameters:
= Square matrix (n X n), elements are doubles

" Cache block size K =64 B = 8 doubles
" Cachesize C <« n (much smaller than n)

« Each iteration:

1
X

n oIn .
" — 4+ 1n =—misses
8 8

15
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Cache Miss Analysis (Naive) ['g”O””gJ

matrix c

+ Scenario Parameters:
= Square matrix (n X n), elements are doubles

" Cache block size K =64 B = 8 doubles
" Cachesize C <« n (much smaller than n)

« Each iteration:
= X
- 2+n =9—nmisses
8 8
= Afterwards in cache:
(schematic) = X

8 doubles wide
16
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Cache Miss Analysis (Naive) ['g”Ofi”gJ

matrix c

+ Scenario Parameters:
= Square matrix (n X n), elements are doubles

" Cache block size K =64 B = 8 doubles
" Cachesize C <« n (much smaller than n)

« Each iteration:

on

- —+n——m|sses
8 8

1
X

TL

+ Total misses: — —n3

/'n

once per element
17
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This is extra

Linear Algebra to the Rescue (1) (non-testable)

material

+» Can get the same result of a matrix multiplication by
splitting the matrices into smaller submatrices
(matrix “blocks”)

+» For example, multiply two 4x4 matrices:

11 Q1 Qg3 Aq47

a a a a A A . . _
A=10 22 &2 2= 12], with B defined similarly.
31 W32 U3z W34 Ay Ay,

g1 Qgp Qg3 Qgql
(A11B11 +A12B21)  (A11Bip + Ag2Bs3)
(A21B11 +A22B1)  (Az1Bip + Ay Byy)

a5 = |

18
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material

This is extra
Linear Algebra to the Rescue (2) [(non-testable)J

C41 C42 C43 C44 A41 A42 A43 A144 B41 B42 B43 B44

Matrices of size n X n, split into 4 blocks of size r (n=4r)
Cyy =A,B, +A,By, + AyBs, + AYBL, = 20 Ay B

+» Multiplication operates on small “block” matrices
= Choose size so that they fit in the cache!
= This technique called “cache blocking”

19
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Blocked Matrix Multiply

+ Blocked version of the naive algorithm:

# move by rxr BLOCKS now
for (1 = 0; 1 < n; 1 += 1)
for (J = 0; J < n; J += r)
for (k = 0; k < n; k += 1)
# block matrix multiplication
for (1b = 1; 1b < 1+r; 1b++)
for (jb = j; jb < J+r; jb++)
for (kb = k; kb < k+r; kb++)
clib*n+jb] += al[ib*n+kb]*blkb*n+jb];

" r = block matrix size (assume r divides n evenly)

20
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Cache Miss Analysis (Blocked) ['gnof'”gJ
matrix c
+ Scenario Parameters:
= Cache block size K = 64 B = 8 doubles
" Cachesize C < n (much smaller than n)
= Three blocks M (r X r) fit into cache: 3r¢ < C
/rz elements per block, 8 per cache block fn/rjblocks\
2 Eacf)/block iteration: ® HEEEEN =
= 12 /8 misses per block — X
" 2n/r Xr?¢/8 = nr/4 —

n/r blocks in row and column

21
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Cache Miss Analysis (Blocked) ['gnof'”gJ
matrix c
+ Scenario Parameters:
= Cache block size K = 64 B = 8 doubles
" Cachesize C < n (much smaller than n)
= Three blocks M (r X r) fit into cache: 3r¢ < C
/rz elements per block, 8 per cache block fn/rjblocks\
2 Eacf)/block iteration: ® HEEEEN =
= 12 /8 misses per block — X
" 2n/r Xr?¢/8 = nr/4 —

n/r blocks in row and column

= Afterwards in cache Cl HEEEEN
(schematic)

1
X

22
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Cache Miss Analysis (Blocked) ['gno””gJ

matrix c

+ Scenario Parameters:
= Cache block size K =64 B = 8 doubles
" Cachesize C < n (much smaller than n)
= Three blocks M (r X r) fit into cache: 3r¢ < C

r? elements per block, 8 per cache block fn/rjblocks\
2 Eacf)/b/lock iteration: M EEEEE =
= 12 /8 misses per block — X
" 2n/r Xr?¢/8 = nr/4 —

n/r blocks in row and column

« Total misses:
" nr/4 X (n/r)2 =n3/(4r)

23
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Matrix Multiply Visualization

+ Heren =100, C =32 KiB, r =30
Naive:

Blocked:

Cache misses: 551888

I _—
Cache misses: 54,888
cache misses
~ 90,000
cache misses

24
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Cache-Friendly Code

+» Programmer can optimize for cache performance
" How data structures are organized

" How data are accessed
- Nested loop structure
- Blocking is a general technique

+ All systems favor “cache-friendly code”
" Getting absolute optimum performance is very platform
specific
- Cache size, cache block size, associativity, etc.
= Can get most of the advantage with generic code
- Keep working set reasonably small (temporal locality)

- Use small strides (spatial locality)
- Focus oninner loop code

25
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Core i7 Haswell
- 2.1 GHz
The Memory Mountaln 32 KB L1 d-cache
256 KB L2 cache

Aggressive 8 MB L3 cache
prefetching 64 B block size
16000
. 14000
<
o
2 12000
5
Q.
£ 10000
>
o
ﬁ 8000 A Ridges
© —>- of temporal
£ 6000 Z J temp
locality
4000
2000
Slopes
of spatial 32k
localit 128k
y s3 512k
Stride (x8 bytes) 39m Size (bytes)
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Learning About Your Machine

<+ Linux:
" lscpu
= |s /sys/devices/system/cpu/cpu0/cache/index0/
- Ex: cat /sys/devices/system/cpu/cpu0/cache/index*/size
+» Windows:
" wmic memcache get <query> (all valuesin KB)

" Ex: wmic memcache get MaxCacheSize

+» Modern processor specs: http://www.7-cpu.com/

27
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C: Java: Memory & data
car *c = malloc(sizeof (car)); Car c¢c = new Car{(); Integers & floats
c->miles = 100; c.setMiles (100) ; x86 assembly
c->gals = 17; c.setGals (17); Procedures & stacks
float mpg = get mpg(c); float mpg = Executables
free(c); c.getMPG () ; Arrays & structs
~ & Memory & caches
Assembly <;Jet_mp<;f}:1 ] Processes
. pushq srbp .
language: movq 4rsp, rbp Virtual memory
.. Memory allocation
popq srbp Javavs. C
ret i
\ 4
Machine 0111010000011000
ode: 100011010000010000000010
code. 1000100111000010
110000011111101000011111
Computer

system:

28
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Leading Up to Processes

+» System Control Flow

Control flow

Exceptional control flow

Asynchronous exceptions (interrupts)
Synchronous exceptions (traps & faults)

CSE351, Autumn 2018

29
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Control Flow

+» So far: we’ve seen how the flow of control changes
as a single program executes

+» Reality: multiple programs running concurrently

" How does control flow across the many components of the
system?

" |n particular: More programs running than CPUs

+ Exceptional control flow is basic mechanism used for:
" Transferring control between processes and OS
= Handling I/0 and virtual memory within the OS

" Implementing multi-process apps like shells and web servers
" Implementing concurrency

30
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+ Processors do only one thing:

" From startup to shutdown, a CPU simply reads and executes
(interprets) a sequence of instructions, one at a time

" This sequence is the CPU’s control flow (or flow of control)

time

Physical control flow

<startup>
instr,
instr,
instr,

instr
<shutdown>

31
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Altering the Control Flow

+» Up to now, two ways to change control flow:
= Jumps (conditional and unconditional)
= Call and return
= Both react to changes in program state

+ Processor also needs to react to changes in system state
= Unix/Linux user hits “Ctrl-C” at the keyboard
= User clicks on a different application’s window on the screen
= Data arrives from a disk or a network adapter
" |nstruction divides by zero
= System timer expires

+ Can jumps and procedure calls achieve this?

"= No —the system needs mechanisms for “exceptional” control flow!

32
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This is extra

Java Digression (non-testable)

material

+ Java has exceptions, but they’re something different
= Examples: NullPointerException, MyBadThingHappenedException, ...

" throw statements

" try/catch statements (“throw to youngest matching catch on the call-
stack, or exit-with-stack-trace if none”)

+ Java exceptions are for reacting to (unexpected) program state
= Can be implemented with stack operations and conditional jumps
= A mechanism for “many call-stack returns at once”

= Requires additions to the calling convention, but we already have the
CPU features we need

+ System-state changes on previous slide are mostly of a
different sort (asynchronous/external except for divide-by-
zero) and implemented very differently

33
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Exceptional Control Flow

+ Exists at all levels of a computer system

+ Low level mechanisms
= Exceptions

- Change in processor’s control flow in response to a system event
(i.e. change in system state, user-generated interrupt)

Implemented using a combination of hardware and OS software

+ Higher level mechanisms

= Process context switch
Implemented by OS software and hardware timer
= Signals
Implemented by OS software
-« We won’t cover these — see CSE451 and CSE/EE474

CSE351, Autumn 2018

34
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Exceptions

+ An exception is transfer of control to the operating system (OS)
kernel in response to some event (i.e. change in processor state)
= Kernel is the memory-resident part of the OS

= Examples: division by 0, page fault, I/O request completes, Ctrl-C

User Code OS Kernel Code

event —— current_instr ¥, exception

>
next_instr exception processing by
exception handler, then:
* return to current_instr,

* return to next_instr, OR
* abort

R/

+» How does the system know where to jump to in the OS?

35
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Exception Table

+ A jump table for exceptions (also called Interrupt Vector Table)

= Each type of event has a unique
exception number k

= k =index into exception table
(a.k.a interrupt vector)

code for
= Handler k is called each time exception handler 0
exception k occurs Exception o
Table :
exception handler 1
0 ¢ /
1 « code for
2 o« exception handler 2
n-1 o
ExceTtion code for
P exception handler n-1
numbers

36
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Exception Table (Excerpt)

Exception Number
0

13

14

18

32-255

Description

Divide error

General protection fault
Page fault

Machine check
OS-defined

Exception Class
Fault
Fault
Fault
Abort

Interrupt or trap

CSE351, Autumn 2018
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Leading Up to Processes

+» System Control Flow
= Control flow
= Exceptional control flow
= Asynchronous exceptions (interrupts)
= Synchronous exceptions (traps & faults)

CSE351, Autumn 2018

38
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Asynchronous Exceptions (Interrupts)

+» Caused by events external to the processor

" |ndicated by setting the processor’s interrupt pin(s) (wire into CPU)
= After interrupt handler runs, the handler returns to “next” instruction

« Examples:

= |/O interrupts
Hitting Ctrl-C on the keyboard
 Clicking a mouse button or tapping a touchscreen

- Arrival of a packet from a network
- Arrival of data from a disk
" Timer interrupt
Every few ms, an external timer chip triggers an interrupt
Used by the OS kernel to take back control from user programs

39
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Synchronous Exceptions

« Caused by events that occur as a result of executing an
instruction:
" Traps
 Intentional: transfer control to OS to perform some function
- Examples: system calls, breakpoint traps, special instructions

« Returns control to “next” instruction
=" Faults
Unintentional but possibly recoverable

Examples: page faults, segment protection faults, integer divide-by-zero
exceptions

- Either re-executes faulting (“current”) instruction or aborts
= Aborts
- Unintentional and unrecoverable
- Examples: parity error, machine check (hardware failure detected)

- Aborts current program

40
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System Calls

+ Each system call has a unique ID number

+» Examples for Linux on x86-64:

Number
0
1
2
3
4

57
59
60
62

Name
read
write
open
close
stat
fork
execve
exit

kill

Description

Read file

Write file

Open file

Close file

Get info about file
Create process
Execute a program
Terminate process

Send signal to process

41
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Traps Example: Opening File

« Usercalls open(filename, options)
+ Calls __open function, which invokes system call instruction syscall

00000000000e5d70 < open>:
eb5d’79: b8 02 00 00 0O mov S$0x2,%eax # open is syscall 2
ebd7e: 0f 05 syscall # return value in S%rax
e5d80: 48 3d 01 £0 f£f ff cmp SOxfffffffffffff001,%rax
ebdfa: c3 retq
User code OS5 Kernel code m %rax contains syscall number
m Other argumentsin $rdi,
Exception $rsi, $rdx, 3rl0, $r8, $r9
syscallvy >

cmp | . m Returnvaluein $rax
Open file
Returns m Negative value is an error

corresponding to negative
errno

v

42
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Fault Example: Page Fault

int a[1000];
+ User writes to memory location Tnt mam - {(;
« That portion (page) of user’s memory a[500] = 13;
is currently on disk }
8048307 : c7 05 10 9d 04 08 0d movl  $0xd,0x8049d10
User code OS Kernel code

exception: page fault handle_page_fault:

movl & >
Create page and
returns load into memory

'

« Page fault handler must load page into physical memory
+ Returns to faulting instruction: mov is executed again!

= Successful on second try
43
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Fault Example: Invalid Memory Reference

int a[1000];
int main ()

{

a[5000] = 13;
}

80483b7: c7 05 60 e3 04 08 0d movl $0xd, 0x804e360

User Process 0OS

l exception: page fault handle_page_fault:

movl

. detect invalid address
signal process

Page fault handler detects invalid address
Sends SIGSEGV signal to user process

User process exits with “segmentation fault”
44
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Summary

+» EXceptions
" Events that require non-standard control flow

" Generated externally (interrupts) or internally (traps and
faults)

= After an exception is handled, one of three things may
happen:
- Re-execute the current instruction
- Resume execution with the next instruction
- Abort the process that caused the exception

45



