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Administrivia

+» Homework 4 due Friday (11/16)
+» Lab 4 released over the long weekend

= Cache parameter puzzles and code optimizations
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Write-back, write-allocate example

VQ\IA IOH— f\O"/ j'\wv\/

Contents of memory stored at address G
bt asume Lfor all oF eXC\W\rle y

Cache T/—\ G OxXxBEEF 0] < dirty bit

L

tag (there is only one set in this tiny cache, so the tag is the entire block address!)

In this example we are sort of
ignoring block offsets. Here a block
G OxBEEF holds 2 bytes (16 bits, 4 hex digits).

Memory F O0xCAFE

Normally a block would be much
bigger and thus there would be
multiple items per block. While only
one item in that block would be
written at a time, the entire line would
be brought into cache. 3
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Write-back, write-allocate example

write miss
mov OxXFACE, F
D chede cache or F —miss

@ pul blodk in> §,Fhen e

Cache G OxBEEF ' <— dirty bit
,H\e wne 50 /
Memory F O0xCAFE
s
G O0xBEEF
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Write-back, write-allocate example

mov OxXFACE, F

W dalo i Hode

]
Cache F | O>j1CAFE 0l I dirty bit

O felu Hock
Step 1: Bring F into cache

\/\\

Memory F (0xCAFE)

G OxBEEF
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Write-back, write-allocate example

mov OxXFACE, F

e ——
Cache F ] OxFACE | 1 dirty bit
|
j Cleanse wr"*efkadc)
\_g | k.\ .
Attereste Step 2: Write OxFACE
\ to cache only and set

dirty bit
Memory F Z OxCAFﬂ

—/’7

G OxBEEF
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Write-back, write-allocate example

ur\/’}c H“I’
mov OxXFACE, F mov OXFEED, F

Cache F | W()VFEED 1| [ dirty bit

Write hit!
Write OXFEED to
cache only

Memory F O0xCAFE

G OxBEEF
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Write-back, write-allocate example

recd miss
mov OxFACE, F mov OxXFEED, F mov G, $rax
Cache F | OXFEED 1| [« dirty bit

Memory F O0xCAFE

G OxBEEF
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Write-back, write-allocate example

mov OxFACE, F mov OxXFEED, F mov G, $rax

data sl consistest

] Witk menov
Cache G OxXxBEEF 0] < dirty bit
Z ~
. @ loak new
e Clock
Z\ﬁ 1. Write F back to memory
/ since it is dirty
~ 2. Bring G into the cache so
Memory F OiFE‘D / we can copy it into $rax
il
G (OxBEEF) —

-_
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Peer Instruction Question

+» Which of the following cache statements is FALSE?
= \ote at http://PollEv.com/justinh

i A.l We can reduce compulsory misses by decreasing
our block size smaller blode size pulls fover bytes it $

6n & Mss

B. We can reduce conflict misses b\@increasing
associativity " options 1o place Hotks before
evictions oGy

C. A write-back cache will save time for code with

. . frequently ~uged blocks rard
good temporal locality on wrltesgdfﬁm/ Ly Forr orfebecls 4

D. A write-through cache will always match data

yes, s main

with the memory hierarchy level below itgod < ddda
onsisten
E. We're lost... consincy

10
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Optimizations for the Memory Hierarchy

+» Write code that has locality!

= Spatial: access data contiguously

= Temporal: make sure access to the same data is not too far
apartin time

+» How can you achieve locality?

= Adjust memory accesses in code (software) to improve miss
rate (MR)

- Requires knowledge of both how caches work as well as your system’s
parameters

" Proper choice of algorithm

" Loop transformations

11
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Example: Matrix Multiplication

C A B
ENEEEEEE SEEEEEEE En N
C..—=> L H [EEEEe
] N NN
= W
W
ENEEE BEEE W
ENEE NEE B AN
EEEE NEE H | NN

o

*
—

n
C*ij: E aik-bkj a*
k=1

12
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Matrices in Memory

«» How do cache blocks fit into this scheme?

" Row major matrix in memory:

COLUMN of matrix (blue) is spread —

among cache blocks shown in red
13
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Naive Matrix Multiply

# move along rows of A
for (1 = 0; 1 < n; 1++4)
# move along columns of B
for (7 = 0; J < n; Jj++)
# EACH k loop reads row of A, col of B
# Also read & write c(i,j) n times
for (k = 0; k < n; k++) ek e
c[i*n+j](::>a[i*n+k] * blk*n+]]; aces potlery

P4

B0 (515 @ Read © Read 6>Read
C(i,j) C(i,j) Ali,:)
] — | 1] X B(:,j)

14
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Cache Miss Analysis (Naive ['gno””gJ

matrix c

+ Scenario Parameters:
= Square matrix (n X n), elements are doubles

" Cache blocksize K=64B=8 doubles<—j3 ke elemests per

CaonC block.
ggg Cache size C < n (much smaller than n)
key 6Smmp'1‘ ion !
1234 A E
. . ] I zl
+» Each iteration: a
n on . —
" — 47N = —misses
8 8
. \SoY @‘@ \ e Time e
& bes oo MHkHHHHH @] | m, dod h@ been
5(aad'ia\l (o(of\)\i‘l\/ IW‘ daen Q) i kicked onr of $

stride-1 8@1 -

L]
°
&

d\@r——"——( 15
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Cache Miss Analysis (Naive) ['g”O””gJ

matrix c

+ Scenario Parameters:
= Square matrix (n X n), elements are doubles

" Cache block size K =64 B = 8 doubles
" Cachesize C <« n (much smaller than n)

« Each iteration:
n on . — X
" —+4+ 1N = — misses
8 8
= Afterwards in cache:
(schematic) = X
red SLow\"s
Kok r@.wo:\vx‘:ﬁ

A the fP 8 doubles wide 16
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Cache Miss Analysis (Naive) ['g”O””gJ

matrix c

+ Scenario Parameters:
= Square matrix (n X n), elements are doubles

" Cache block size K =64 B = 8 doubles
" Cachesize C <« n (much smaller than n)

« Each iteration:

1
X

n oIn .
" — 4+ 1n =—misses
8 8

. on 9
+ Total misses: - X N2 = §n3

once per element
17
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This is extra

Linear Algebra to the Rescue (1) (non-testable)

material

+» Can get the same result of a matrix multiplication by
splitting the matrices into smaller submatrices
(matrix “blocks”)

+» For example, multiply two 4x4 matrices:

Al\ A\L_ )
ar, Ay ;6—11? A1 4)7
4 = 'az;l Ay, 1_@@\__‘{24 _[A11 Arz
‘@37~ A3p7 33" " d3g| T |4, A,y

1‘141 a42'. a43 a44

B = [(AllBll +A12821) (A11312 + AlZBZZ)
(A21Bll +A22821) (AZIBIZ + AZZBZZ)

], with B defined similarly.

18
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material

This is extra
Linear Algebra to the Rescue (2) [(non-testable)]

C11 C12 C13 C14 Aiﬂ A12 A13 A14 B11

C21 CZZJ C23 C24 %.’;g @/A24\ BZ']

C31 C32 C43 C34 A31 A32 A33 A34 B32

|@x®§§fp \
N

o

N

w

o

N

NG

C41 C42 C43 C44 A41 A42 A43 A144 B41 B43 B44

Matrices of size n X n, split into 4 blocks of size r (n=4r)
Cyy =A,B, +A,By, + AyBs, + AYBL, = 20 Ay B

+» Multiplication operates on small “block” matrices
= Choose size so that they fit in the cache!
= This technique called [‘cache blocking’| %

19
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Blocked Matrix Multiply L oneted 0T

+ Blocked version of the naive algorithm: + =

# move by rxr BLOCKS now
for (1 = 0; 1 < n; 1 += 1)
for (3 = 0; § < n; 3§ += r) loop over blode
for (k. = 0; k < n; k += 1) _J moctrice S

# block matrix multiplication

for (1b = 1; 1b < 1+r; 1b++)
blp dthin ) for (§b = §; Jb < jtr; Fbt+)
bloge matrices

for (kb = k; kb < k+r; kb++)

c[ib*n+jb] += alib*n+kb]*b[kb*n+ib];

" r = block matrix size (assume r divides n evenly)

20
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Cache Miss Analysis (Blocked) ['gnof‘”gJ

matrix c

+ Scenario Parameters:
= Cache block size K =64 B = 8 doubles
" Cachesize C < n (much smaller than n)
e blocks (r X r) fit into cache: 3r¢ < C

2 Eacf)/b/lock iteration: ~m EEEEN
= 2 /8 misses per block
" 2n/r X r?/8 = nr/4

n/r blocks in row and column

1
X

21
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Cache Miss Analysis (Blocked) ['gnof'”gJ
matrix c
+ Scenario Parameters:
= Cache block size K = 64 B = 8 doubles
" Cachesize C < n (much smaller than n)
= Three blocks M (r X r) fit into cache: 3r¢ < C
/rz elements per block, 8 per cache block fn/rjblocks\
2 Eacf)/block iteration: ® HEEEEN =
= 12 /8 misses per block — X
" 2n/r Xr?¢/8 = nr/4 —

n/r blocks in row and column

= Afterwards in cache Cl HEEEEN
(schematic)

1
X

22
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Cache Miss Analysis (Blocked) ['g”O””gJ

matrix c

+ Scenario Parameters:
= Cache block size K =64 B = 8 doubles
" Cachesize C < n (much smaller than n)
= Three blocks M (r X r) fit into cache: 3r¢ < C

r? elements per block, 8 per cache block fn/rjblocks\
2 Eacf)/b/lock iteration: M EEEEE =
= 12 /8 misses per block — X
" 2n/r Xr?¢/8 = nr/4 —

n/r blocks in row and column

« Total misses:
" nr/4x (n/r)2 =n3/(4r) w /2

23
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Matrix Multiply Visualization

\Au&eé\ () ,5\\;\:1 X
+ Heren =100, C =32 KiB, r = 30 NP S
\o\o(,\$
Naive:
Blocked:

Cache misses: 551888

I _—
Cache misses: 54,888
cache misses
~ 90,000
cache misses

24
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Cache-Friendly Code

+» Programmer can optimize for cache performance
" How data structures are organized

" How data are accessed
- Nested loop structure
- Blocking is a general technique

+ All systems favor “cache-friendly code”

" Getting absolute optimum performance is very platform
specific

- Cache size, cache block size, associativity, etc. -
Can get most of the advantage with generic code

- Keep working set reasonably small (temporal locality) 9T9&+ 9&\@%1
- Use small strides (spatial locality) rles of thumby!
L - Focus oninner loop code

AN

25
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Core i7 Haswell
1 2.1 GHz
The Memory Mountaln 32 KB L1 d-cache
256 KB L2 cache
Aggressive 8 MB L3 cache

prefgiching 64 B block size
< 16000
S
& __ 14000
< = -
¢ 2 12000 — N
>~ 10000 LU 4 gize exceeded
53
5§ 8000 A Ridges
5 —> of temporal
£8 6000 > of temp
locality
4000

L) size ex(eed ed
Slopes
of spatial

32k
locality s3

128k

s5 512k
™ working dafu
Stride (x8 bytes) 8m n sef side

Size (bytes)
. 32m
dccmw'mj Sroirul lb(a\l-}y 3111 28m 4/

'mu-eaﬁnj

s7

26
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Learning About Your Machine

<+ Linux:
" lscpu
= |s /sys/devices/system/cpu/cpu0/cache/index0/
- Ex: cat /sys/devices/system/cpu/cpu0/cache/index*/size
+» Windows:
" wmic memcache get <query> (all valuesin KB)

" Ex: wmic memcache get MaxCacheSize

+» Modern processor specs: http://www.7-cpu.com/

27
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Roadmap

CSE351, Autumn 2018

C: Java: Memory & data
car *c = malloc(sizeof (car)); Car c¢c = new Car{(); Integers & floats
c->miles = 100; c.setMiles (100) ; x86 assembly
c->gals = 17; c.setGals (17); Procedures & stacks
float mpg = get mpg(c); float mpg = Executables
free(c); c.getMPG () ; Arrays & structs
~ & Memory & caches
Assembly <;Jet_mp<;f}:1 ] Processes
. pushq srbp .
language: movq 4rsp, rbp Virtual memory
.. Memory allocation
popq srbp Javavs. C
ret i
\ 4
Machine 0111010000011000
ode: 100011010000010000000010
code. 1000100111000010
110000011111101000011111
Computer

system:

28
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Leading Up to Processes

+» System Control Flow

Control flow

Exceptional control flow

Asynchronous exceptions (interrupts)
Synchronous exceptions (traps & faults)

CSE351, Autumn 2018

29
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Control Flow

+» So far: we’ve seen how the flow of control changes
as a single program executes

+» Reality: multiple programs running concurrently

" How does control flow across the many components of the
system?

" |n particular: More programs running than CPUs

+ Exceptional control flow is basic mechanism used for:
" Transferring control between processes and OS
= Handling I/0 and virtual memory within the OS

" Implementing multi-process apps like shells and web servers
" Implementing concurrency

30
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Control Flow

L19: Caches IV CSE351, Autumn 2018

+ Processors do only one thing:

" From startup to shutdown, a CPU simply reads and executes
(interprets) a sequence of instructions, one at a time

" This sequence is the CPU’s control flow (or flow of control)

time

Physical control flow

<startup>
instr,
instr,
instr,

instr
<shutdown>

31
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Altering the Control Flow

+» Up to now, two ways to change control flow:
= Jumps (conditional and unconditional)
= Call and return
= Both react to changes in program state

+ Processor also needs to react to changes in system state
= Unix/Linux user hits “Ctrl-C” at the keyboard
= User clicks on a different application’s window on the screen
= Data arrives from a disk or a network adapter
" |nstruction divides by zero
= System timer expires

+ Can jumps and procedure calls achieve this?

"= No —the system needs mechanisms for “exceptional” control flow!

32
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This is extra

Java Digression (non-testable)

material

+ Java has exceptions, but they’re something different
= Examples: NullPointerException, MyBadThingHappenedException, ...

" throw statements

" try/catch statements (“throw to youngest matching catch on the call-
stack, or exit-with-stack-trace if none”)

+ Java exceptions are for reacting to (unexpected) program state
= Can be implemented with stack operations and conditional jumps
= A mechanism for “many call-stack returns at once”

= Requires additions to the calling convention, but we already have the
CPU features we need

+ System-state changes on previous slide are mostly of a
different sort (asynchronous/external except for divide-by-
zero) and implemented very differently

33
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Exceptional Control Flow

+ Exists at all levels of a computer system

+ Low level mechanisms
= Exceptions

- Change in processor’s control flow in response to a system event
(i.e. change in system state, user-generated interrupt)

Implemented using a combination of hardware and OS software
+» Higher level mechanisms

" Process context switch
Implemented by OS software and hardware timer
= Signals

Implemented by OS software
-« We won’t cover these — see CSE451 and CSE/EE474

CSE351, Autumn 2018

34
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Exceptions

+ An exception is transfer of control to the operating system (OS)
kernel in response to some event (i.e. change in processor state)
= Kernel is the memory-resident part of the OS

= Examples: division by 0, page fault, I/O request completes, Ctrl-C

User Code OS Kernel Code

event —— current_instr‘l/ exception

next_instr g exception processing by
\l exception handler, then:

* returnto current_instr,@)

* return to next_instr, OR(2)

. abortC’S)

\4

R/

+» How does the system know where to jump to in the OS?

35
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Exception Table

+ A jump table for exceptions (also called Interrupt Vector Table)

= Each type of event has a unique

exception number k

= k =index into exception table

(a.k.a interrupt vector)

= Handler k is called each
exception k occurs

e T00E
. o
\ \\é e ™ é\ Of\‘) 5)(&@%?&\7

. (=
\f\o\S

time

Exception

Table

code for
exception handler O

code for
exception handler 1

g
.//

./

code for
exception handler 2

n-1

b

T

Exception
numbers

code for
exception handler n-1

CSE351, Autumn 2018
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Exception Table (Excerpt)

Exception Number
0

13

14

18

32-255

Description

Divide error

General protection fault
Page fault

Machine check
OS-defined

Exception Class
Fault
Fault
Fault
Abort

Interrupt or trap

CSE351, Autumn 2018
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Leading Up to Processes

% System Control Flow

Control flow
Exceptional control flow
Asynchronous exceptions (interrupts)

Synchronous exceptions (traps & faults)

CSE351, Autumn 2018

38
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Asynchronous Exceptions (Interrupts)

/ O |
+» Caused by events external to the processor el

" |ndicated by setting the processor’s interrupt pin(s) (wire into CPU)

(XL [}

-,

‘\\\

= After interrupt handler runs, the handler returns to “next” instruction

« Examples:

= |/O interrupts
Hitting Ctrl-C on the keyboard
 Clicking a mouse button or tapping a touchscreen
- Arrival of a packet from a network
- Arrival of data from a disk
" Timer interrupt
Every few ms, an external timer chip triggers an interrupt
Used by the OS kernel to take back control from user programs

39
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Synchronous Exceptions

« Caused by events that occur as a result of executing an
instruction:
" Traps
 Intentional: transfer control to OS to perform some function

- Examples: system calls, breakpoint traps, special instructions
. Returns control to “next” instruction (" cumedt" instr did Lt T wos Suwo&ech)

=" Faults

Unintentional but possibly recoverable

Examples: page faults, segment protection faults, integer divide-by-zero
exceptions

- Either re-executes faulting (“current”) instruction or aborts
= Aborts Lt reoveralle Ud nd recoverable

- Unintentional and unrecoverable
- Examples: parity error, machine check (hardware failure detected)

- Aborts current program

40
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System Calls

+ Each system call has a unique ID number

+» Examples for Linux on x86-64:

Number
0
1
2
3
4

57
59
60
62

Name
read
write
open
close
stat
fork
execve
exit

kill

Description

Read file

Write file

Open file

Close file

Get info about file
Create process
Execute a program
Terminate process

Send signal to process

41



W UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Autumn 2018

Traps Example: Opening File

« Usercalls open(filename, options)
+ Calls __open function, which invokes system call instruction syscall

00000000000e5d70 < open>:
eb5d’79: b8 02 00 00 0O mov S$0x2,%eax # open is syscall 2
ebd7e: 0f 05 syscall # return value in S%rax
e5d80: 48 3d 01 f0 ff ff cmp SOxfffffffffffff001,%rax
ebdfa: c3 retq
User code OS5 Kernel code m %rax contains syscall number
m Other argumentsin $rdi,
H o y S = = =
sy Except/on R °cr'S1, ordx, %rlO, %r8, r9

cmp : m Returnvaluein $rax
Returns m Negative value is an error

corresponding to negative
errno

v

42
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Fault Example: Page Fault

int a[1000];
+ User writes to memory location Tnt mET ()
« That portion (page) of user’s memory a[500] = 13;
is currently on disk }
80483b7: c7 05 10 9d 04 08 0d movl  $0xd,0x8049d10
Lnovma’ mbv, \’U&
User code OS Kernel code address net uwently

" Menor Y

exception: page fault handle_page_fault:

movl & >
Create page and
returns load into memory

'

« Page fault handler must load page into physical memory
+ Returns to faulting instruction: @Eexecuted againh

= Successful on second try\/

43
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Fault Example: Invalid Memory Reference

int a[1000];
int main ()

{

a[5000] = 13;
}

80483b7: c7 05 60 e3 04 08 0d movl $0xd, 0x804e360

User Process 0OS

l exception: page fault handle_page_fault:

movl

. detect invalid address
signal process

Page fault handler detects invalid address

Sends SIGSEGV signal to user process < x

User process exits with “segmentation fault” —
44
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Summary

+» EXceptions
" Events that require non-standard control flow

" Generated externally (interrupts) or internally (traps and
faults)

= After an exception is handled, one of three things may
happen:
- Re-execute the current instruction
- Resume execution with the next instruction
- Abort the process that caused the exception

45



