Caches II

CSE 351 Autumn 2018

Instructor:

Justin Hsia

Teaching Assistants:

Akshat Aggarwal
An Wang
Andrew Hu
Brian Dai
Britt Henderson
James Shin
Kevin Bi
Kory Watson
Riley Germundson
Sophie Tian
Teagan Horkan

Administrivia

- Homework 4 released tomorrow (Structs, Caches)
- Lab 3 due Friday (11/9)

Mid-Quarter Survey Feedback

- Pace is "moderate" to "a bit too fast"
- Canvas quiz answer keys are annoying, but instant homework feedback is great

Memory Hierarchies

- Some fundamental and enduring properties of hardware and software systems:
 - Faster storage technologies almost always cost more per byte and have lower capacity
 - The gaps between memory technology speeds are widening
 - True for: registers ↔ cache, cache ↔ DRAM, DRAM ↔ disk, etc.
 - Well-written programs tend to exhibit good locality
- These properties complement each other beautifully
 - They suggest an approach for organizing memory and storage systems known as a <u>memory hierarchy</u>
 - For each level k, the faster, smaller device at level k serves as a cache for the larger, slower device at level k+1

An Example Memory Hierarchy

An Example Memory Hierarchy

Intel Core i7 Cache Hierarchy

Processor package

Block size: 64 bytes for all caches

L1 i-cache and d-cache: 32 KiB, 8-way, Access: 4 cycles

L2 unified cache: 256 KiB, 8-way, Access: 11 cycles

L3 unified cache: 8 MiB, 16-way, Access: 30-40 cycles

Making memory accesses fast!

- Cache basics
- Principle of locality
- Memory hierarchies
- Cache organization
 - Direct-mapped (sets; index + tag)
 - Associativity (ways)
 - Replacement policy
 - Handling writes
- Program optimizations that consider caches

Cache Organization (1)

Note: The textbook uses "B" for block size

- \bullet Block Size (K): unit of transfer between \$ and Mem
 - Given in bytes and always a power of 2 (e.g. 64 B)
 - Blocks consist of adjacent bytes (differ in address by 1)
 - Spatial locality!

Cache Organization (1)

Note: The textbook uses "b" for offset bits

- \bullet Block Size (K): unit of transfer between \$ and Mem
 - Given in bytes and always a power of 2 (e.g. 64 B)
 - Blocks consist of adjacent bytes (differ in address by 1)
 - Spatial locality!
- Offset field
 - Low-order $log_2(K) = k$ bits of address tell you which byte within a block
 - (address) mod $2^n = n$ lowest bits of address
 - (address) modulo (# of bytes in a block)

	m-k bits	k bits
$m{m}$ -bit address:	Block Number	Block Offset
(refers to byte in memory)		-

Peer Instruction Question

- * If we have 6-bit addresses and block size K = 4 B, which block and byte does 0x15 refer to?
 - Vote at: http://PollEv.com/justinh

	Block Num	Block Offset
A.	1	1
B.	1	5
C.	5	1
D.	5	5
E.	We're lost	

Cache Organization (2)

- Cache Size (C): amount of data the \$ can store
 - Cache can only hold so much data (subset of next level)
 - Given in bytes (C) or number of blocks (C/K)
 - **Example:** C = 32 KiB = 512 blocks if using 64-B blocks
- Where should data go in the cache?
 - We need a mapping from memory addresses to specific locations in the cache to make checking the cache for an address fast
- What is a data structure that provides fast lookup?
 - Hash table!

Review: Hash Tables for Fast Lookup

Insert:

5

27

34

102

119

Apply hash function to map data to "buckets"

C	
1	
2	
3	
4	
5	
6	
7	
3	
9	

Place Data in Cache by Hashing Address

Place Data in Cache by Hashing Address

Practice Question

- * 6-bit addresses, block size K = 4 B, and our cache holds S = 4 blocks.
- A request for address 0x2A results in a cache miss. Which index does this block get loaded into and which 3 other addresses are loaded along with it?
 - No voting for this question

Place Data in Cache by Hashing Address

Tags Differentiate Blocks in Same Index

Checking for a Requested Address

- CPU sends address request for chunk of data
 - Address and requested data are not the same thing!
 - Analogy: your friend ≠ his or her phone number
- TIO address breakdown:

- Index field tells you where to look in cache
- Tag field lets you check that data is the block you want
- Offset field selects specified start byte within block
- Note: t and s sizes will change based on hash function

Cache Puzzle

Vote at http://PollEv.com/justinh

- Based on the following behavior, which of the following block sizes is NOT possible for our cache?
 - Cache starts empty, also known as a cold cache
 - Access (addr: hit/miss) stream:
 - (14: miss), (15: hit), (16: miss)

- A. 4 bytes
- B. 8 bytes
- C. 16 bytes
- D. 32 bytes
- E. We're lost...

Direct-Mapped Cache

Direct-Mapped Cache Problem

Associativity

- What if we could store data in any place in the cache?
 - More complicated hardware = more power consumed, slower
- So we combine the two ideas:
 - Each address maps to exactly one set
 - Each set can store block in more than one way

