L17: Caches Il

CSE351, Autumn 2018

W UNIVERSITY of WASHINGTON

Caches Il

CSE 351 Autumn 2018

Instructor:
Justin Hsia

Teaching Assistants:

Akshat Aggarwal
An Wang
Andrew Hu
Brian Dai

Britt Henderson
James Shin
Kevin Bi

Kory Watson
Riley Germundson
Sophie Tian
Teagan Horkan

W UNIVERSITY of WASHINGTON L17: Caches i CSE351, Autumn 2018

Administrivia

+ Homework 4 released tomorrow (Structs, Caches)
+» Lab 3 due Friday (11/9)

+» Mid-Quarter Survey Feedback
= Paceis “moderate” to “a bit too fast”

= Canvas quiz answer keys are annoying, but instant
homework feedback is great

W UNIVERSITY of WASHINGTON L17: Caches II

CSE351, Autumn 2018

Memory Hierarchies

+» Some fundamental and enduring properties of
hardware and software systems:

= Faster storage technologies almost always cost more per
byte and have lower capacity

" The gaps between memory technology speeds are widening
- True for: registers €<= cache, cache <> DRAM, DRAM <& disk, etc.
= Well-written programs tend to exhibit good locality

+» These properties complement each other beautifully
" They suggest an approach for organizing memory and
storage systems known as a memory hierarchy

- For each level k, the faster, smaller device at level k serves as a cache
for the larger, slower device at level k+1

W UNIVERSITY of WASHINGTON L17: Caches Il CSE351, Autumn 2018

An Example Memory Hierarchy

A
registers CPU registers hold words retrieved from L1 cache
on-chip L1
Smaller, cache (SRAM) L1 cache holds cache lines retrieved from L2 cache
faster,
costlier .
byt off-chip L2
er e
P y cache (SRAM) L2 cache holds cache lines retrieved
from main memory
Larger, main memory
(DRAM) Main memory holds disk blocks
slower,))
retrieved from local disks
cheaper
per byte local secondary storage

Local disks hold files
retrieved from disks on
remote network servers

(local disks)

remote secondary storage
(distributed file systems, web servers)

W UNIVERSITY of WASHINGTON L17: Caches II CSE351, Autumn 2018

An Example Memory Hierarchy

A
explicitly program-controlled
registers (e.g. refer to exactly %rax, %rbx)
on-chip L1
Smaller, BRI program sees “memory”;
faster,)
: hardware manages caching
costlier off-chip L2 |
] transparent
per byte cache (SRAM) P y
Larger main memory
slower, (DRAM)
cheaper
per byte local secondary storage

(local disks)

remote secondary storage
(distributed file systems, web servers)

W UNIVERSITY of WASHINGTON L17: Caches Il CSE351, Autumn 2018

Intel Core i7 Cache Hierarchy

Processor package

L3 unified cache:
8 MiB, 16-way,
Access: 30-40 cycles

L3 unified cache
(shared by all cores)

. Core0 Core 3 . Block size:

| 64 bytes for all caches
Regs Regs !

' L1 i-cache and d-cache:
L1 L1 L1 L1 : 32 KiB, 8-way,
d-cache| [i-cache d-cache| |i-cache : Access: 4 cycles
L2 unified cache:

L2 unified cache L2 unified cache | 256 KiB, 8-way,
Access: 11 cycles

Main memory

W UNIVERSITY of WASHINGTON L17: Caches Il

Making memory accesses fast!

+ Cache basics
+ Principle of locality
+» Memory hierarchies
» Cache organization
= Direct-mapped (sets; index + tag)
= Associativity (ways)
= Replacement policy
®= Handling writes

o®

Program optimizations that consider caches

CSE351, Autumn 2018

W UNIVERSITY of WASHINGTON L17: Caches i CSE351, Autumn 2018

Note: The textbook
uses “B” for block size

Cache Organization (1)

+ Block Size (K): unit of transfer between $ and Mem
" Given in bytes and always a power of 2 (e.g. 64 B)

= Blocks consist of adjacent bytes (differ in address by 1)
- Spatial locality!

W UNIVERSITY of WASHINGTON L17: Caches Il CSE351, Autumn 2018

Note: The textbook
uses “b” for offset bits

Cache Organization (1)

+ Block Size (K): unit of transfer between $ and Mem
" Given in bytes and always a power of 2 (e.g. 64 B)

= Blocks consist of adjacent bytes (differ in address by 1)
- Spatial locality!

« Offset field

" Low-orderlog,(K) = k bits of address tell you which byte
within a block

- (address) mod 2™ = n lowest bits of address
= (address) modulo (# of bytes in a block)

m — k bits k bits

m-bit address: Block Number Block Offset
(refers to byte in memory)

W UNIVERSITY of WASHINGTON L17: Caches Il

Peer Instruction Question

+ If we have 6-bit addresses and block size K =4 B,
which block and byte does 0x15 refer to?

= \/ote at: http://PollEv.com/justinh

Block Num Block Offset

A.

B. 1 5
C. 5

D. 5 5
E.

We’re lost...

CSE351, Autumn 2018

10

W UNIVERSITY of WASHINGTON L17: Caches Il CSE351, Autumn 2018

Cache Organization (2)

+ Cache Size (C): amount of data the $ can store
® Cache can only hold so much data (subset of next level)
= Given in bytes (C) or number of blocks (C/K)
= Example: C =32 KiB =512 blocks if using 64-B blocks

+» Where should data go in the cache?

" We need a mapping from memory addresses to specific
locations in the cache to make checking the cache for an
address fast

+» What is a data structure that provides fast lookup?
" Hash table!

11

W UNIVERSITY of WASHINGTON L17: Caches Il

Review: Hash Tables for Fast Lookup

Insert:
5

2°1
34
102
119

Apply hash function to map data
to “buckets”

O 0O J o O b W DN B+ O

CSE351, Autumn 2018

12

W UNIVERSITY of WASHINGTON L17: Caches Il CSE351, Autumn 2018

Place Data in Cache by Hashing Address

Memory Cache
Block Num Block Data Index Block Data
oooo [T T ° >00 rr]
0001 11| 01 111 Here K=48B
0010 L 10 T —and C/K =4
0011 Lo 11 L1 _
0100 TR
0101 L .
0110 [Map to cache index from block
| | |
0111 1 1 1 address
1000 Lo .
1001 | 1 1 | = Use next log,(C/K) = s bits
1812 ——t = (block address) mod (# blocks in
1100 : : : cache)
1101 ;o
1110 L 1
1111 T

13

W UNIVERSITY of WASHINGTON L17: Caches i CSE351, Autumn 2018

Place Data in Cache by Hashing Address

Memory Cache

Block Addr Block Data Index Block Data _
0000 | | | | >00 T
0001 111 01 1 | HereK=48B
0010 N 10 L andC/K =4
0011 Lo 11 o |
0100 B
0101 o :
o110 [HH Map to cache index from block
g L address
1000 L . .
1001 | 1 1 " | ets adjacent blocks fit in cache
1010 I 1 | simultaneously!
1011 L . . .
1100 1 - Consecutive blocks go in consecutive
1101 1 1 cache indices
1110 L1
1111 T

14

W UNIVERSITY of WASHINGTON L17: Caches Il CSE351, Autumn 2018

Practice Question

+» 6-bit addresses, block size K =4 B, and our cache
holds S = 4 blocks.

+» A request for address Ox2A results in a cache miss.
Which index does this block get loaded into and
which 3 other addresses are loaded along with it?

= No voting for this question

15

W UNIVERSITY of WASHINGTON L17: Caches i CSE351, Autumn 2018

Place Data in Cache by Hashing Address

Memory Cache
Block Addr Block Data Index Block Data _
0000 L »>00 L
0001 T 01 T . __HereK=4B
0010 N 10 L andC/K =4
0011 Lo 11 L1 |
0100 R
0101 L ..
— |
o110 [THTHT Collision!
orirgp v v o1 = This might confuse the cache later
1000 Lo
001 - when we access the data
| | |
1010 . = Solution?
1011 L
1100 I
1101 ;o
1110 L1
1111 T

16

W UNIVERSITY of WASHINGTON L17: Caches II CSE351, Autumn 2018

Tags Differentiate Blocks in Same Index

Memory Cache
Block Addr Block Data Index Tag Block Data _
0000 L »00 |00 L
0001 11 01 I Here K =4 B
0010 L 10 01 L and C/K =4
0011 L1 11 |o1 Lo |
0100 11
0101 v _ fadd bi
o110 [T Tag = rest of address Dbits
oliif + 1 | " lbits=m—-s—k
1000 Lo
1001 [¢ 1 | = Check this during a cache lookup
1010 [T T 1
1011 L
1100 11
1101 ;o
1110 I
1111 o1

17

W UNIVERSITY of WASHINGTON L17: Caches Il CSE351, Autumn 2018

Checking for a Requested Address

% CPU sends address request for chunk of data

= Address and requested data are not the same thing!
- Analogy: your friend # his or her phone number

« T10 address breakdown:
m-bit address: Tag (1) Index (s) | Offset (k)

\)
Y
Block Number

" Index field tells you where to look in cache
o field lets you check that data is the block you want
= Offset field selects specified start byte within block

" Note: 7 and s sizes will change based on hash function
18

W UNIVERSITY of WASHINGTON L17: Caches Il CSE351, Autumn 2018

Cache Puzzle Vote at http://PollEv.com/justinh

+» Based on the following behavior, which of the
following block sizes is NOT possible for our cache?

= Cache starts empty, also known as a cold cache

= Access (addr: hit/miss) stream:
« (14: miss), (15: hit), (16: miss)

8 bytes

16 bytes

. 32 bytes
We're lost...

mOoOoO®mP

19

W UNIVERSITY of WASHINGTON L17: Caches i CSE351, Autumn 2018

Direct-Mapped Cache

Memory Cache
Block Addr Block Data Index Tag Block Data _
oojoo] | , , | »00 |00 T
00[01 I 1| 01 11 1 11 Here K =4B
oofto | * I I 10 [o1 o — and C/K =4
oojryf | 4, 4 | SO o -
01100 | | |
0101 S :
orlid [1 Hash function: (block address)
R o] L mod (# of blocks in cache)
1ofoof [T T 1
100l | 1 1 " EFach memory address maps to
1ofz f T 1 exactly one index in the cache
10[11 .
loo T " Fast (and simpler) to find an
oy [T T address
111200 | 4
11|11 I I

20

W UNIVERSITY of WASHINGTON L17: Caches Il CSE351, Autumn 2018

Direct-Mapped Cache Problem

Memory Cache
Block Addr Block Data Index Tag Block Data
oofod [T T 1 00 [=° T
00]01 11 1 01 ?? 111 Here K=4B
oofzof [T T 1 10 T 1 1 | [andC/K=4
00[11 L1 11 |22 Lo |
01100 | | |
o g A > What h if th
01|10l — o d appens IT we access the
R b I following addresses?
10foof [T T T
10[01 L1 m §8,24,8,6 24,8, ..7
18 ig’ o = Conflict in cache (misses!)
]]]
11foof [1 1 i = Rest of cache goes unused
11(01 ;o _
o [+ Solution?
11|11 I I

21

W UNIVERSITY of WASHINGTON

NONOUT AWDN-—=O

Associativity

L17: Caches Il

CSE351, Autumn 2018

+» What if we could store data in any place in the cache?

" More complicated hardware = more power consumed, slower

+ So we combine the two ideas:

= Each address maps to exactly one set

" Each set can store block in more than one way

1-way:
8 sets,
1 block each

direct mapped

Set

2-way:
4 sets,
2 blocks each

Set

4-way:
2 sets,
4 blocks each

Set

8-way:
1 set,
8 blocks

fully associativezz

