L17: Caches Il

CSE351, Autumn 2018

W UNIVERSITY of WASHINGTON

Caches Il

CSE 351 Autumn 2018

Instructor:
Justin Hsia

Teaching Assistants:

Akshat Aggarwal
An Wang
Andrew Hu
Brian Dai

Britt Henderson
James Shin
Kevin Bi

Kory Watson
Riley Germundson
Sophie Tian
Teagan Horkan

W UNIVERSITY of WASHINGTON L17: Caches i CSE351, Autumn 2018

Administrivia

+ Homework 4 released tomorrow (Structs, Caches)
+» Lab 3 due Friday (11/9)

+» Mid-Quarter Survey Feedback
= Paceis “moderate” to “a bit too fast”

= Canvas quiz answer keys are annoying, but instant
homework feedback is great

W UNIVERSITY of WASHINGTON L17: Caches II

CSE351, Autumn 2018

Memory Hierarchies

+» Some fundamental and enduring properties of
hardware and software systems:

= Faster storage technologies almost always cost more per
byte and have lower capacity

" The gaps between memory technology speeds are widening
- True for: registers €<= cache, cache <> DRAM, DRAM <& disk, etc.

= Well-written programs tend to exhibit good locality

+» These properties complement each other beautifully
" They suggest an approach for organizing memory and
storage systems known as a memory hierarchy

- For each level k, the faster, smaller device at level k serves as a cache
for the larger, slower device at level k+1

W UNIVERSITY of WASHINGTON L17: Caches II CSE351, Autumn 2018

An Example Memory Hierarchy

CPU registers hold words retrieved from L1 cache

cache (SRAM) L1 cache holds cache lines retrieved from L2 cache

off-chip L2

cache (SRAM) L2 cache holds cache lines retrieved
from main memory

main memory

(DRAM) Main memory holds disk blocks
retrieved from local disks

local secondary storage

. Local disks hold files
(local disks)

retrieved from disks on
remote network servers

remote secondary storage
(distributed file systems, web servers)

W UNIVERSITY of WASHINGTON L17: Caches II CSE351, Autumn 2018

An Example Memory Hierarchy

A
explicitly program-controlled
registers (e.g. refer to exactly %rax, %rbx)
on-chip L1
Smaller, BRI program sees “memory”;
faster,)
: hardware manages caching
costlier off-chip L2 |
] transparent
per byte cache (SRAM) P y
Larger main memory
slower, (DRAM)
cheaper
per byte local secondary storage

(local disks)

remote secondary storage
(distributed file systems, web servers)

W UNIVERSITY of WASHINGTON L17: Caches Il CSE351, Autumn 2018

Intel Core i7 Cache Hierarchy

Processor package

L3 unified cache:
8 MiB, 16-way,
Access: 30-40 cycles

L3 unified cache
(shared by all cores)

. Core0 Core 3 . Block size:

| 64 bytes for all caches
Regs ol Regs !

dta I {“’J'”‘mf ' L1 i-cache and d-cache:
L1 L1 L1 L1 : 32 KiB, 8-way,

. | |d-cache| |i-cache d-cache| |i-cache| | ! Access: 4 cycles
L2 unified cache:

L2 unified cache L2 unified cache ! 256 KiB, 8-way,
Access: 11 cycles

Main memory

W UNIVERSITY of WASHINGTON L17: Caches Il

Making memory accesses fast!

+ Cache basics
+ Principle of locality
+» Memory hierarchies
» Cache organization
= Direct-mapped (sets; index + tag)
= Associativity (ways)
= Replacement policy
®= Handling writes

o®

Program optimizations that consider caches

CSE351, Autumn 2018

W UNIVERSITY of WASHINGTON L17: Caches Il CSE351, Autumn 2018

Note: The textbook
uses “B” for block size

Cache Organization (1)

+ Block Size (K): unit of transfer between $ and Mem
" Given in bytes and always a power of 2 (e.g. 64 B)

= Blocks consist of adjacent bytes (differ in address by 1)
- Spatial locality!
Lab la: uthinSame Rk

gﬁ % D Blsck 0°
r" Rﬁ? MBlock L

——

O os/c;_/,,g:’c;o 00 \

63: OLO... OOl 11y 0 (,%LH 127
64: 0O ... O\ [00s 030 few: A BeckO A Ul

22 0LO... OV [t I\ \ ack 4

-~ —
bloCk \O(bCk
hum\oer ()’Q‘FSC‘,+

Whah uo(,\c7 j\ t wl'\cfé A \Abckj

W UNIVERSITY of WASHINGTON L17: Caches i CSE351, Autumn 2018

Note: The textbook
uses “b” for offset bits

Cache Organization (1)

+ Block Size (K): unit of transfer between $ and Mem
" Given in bytes and always a power of 2 (e.g. 64 B)

= Blocks consist of adjacent bytes (differ in address by 1)
- Spatial locality!

+ Offset field T

g Low—orderﬂog(l() = k\bits of address tell you which byte
within a block

- (address) mod 2™ = n lowest bits of address How many F\Jrs do T
Yordinde ¢ _ Need b s‘oeu‘ﬁi every
= (address) modulo (# of bytes in a block) byte ™ o block?
m — k bits k bits

m-bit address: Block Number Block Offset
(refers to byte in memory)

W UNIVERSITY of WASHINGTON L17: Caches Il CSE351, Autumn 2018

Peer Instruction Question

+ If we have 6-bit addresses and block size K =4 B,
which block and byte does 0x15 refer to?

= \/ote at: http://PollEv.com/justinh

Block Num Block Offset Ox 1 5

~NA

A. addvess: OL, O 1 O L O |
]o\b(,k AW N O‘Hse‘i’

B. 1 5 (wlre B Cualue 1)
C. 5 1| otset width = foy, (K)= flgo ()= 2 s
D. 5 5

(O¢AS
E. We're lost... J

block numbey 5)g %('
offset . 00 OV 1o |

10

W UNIVERSITY of WASHINGTON L17: Caches II CSE351, Autumn 2018

Cache Organization (2)

+ Cache Size (C): amount of data the $ can store

® Cache can only hold so much data (subset of next level)

= Given in bytes (C) or number of blocks (C /K)
= Example: C = 32 KiB = 512 bIocks if using 64 B blocks

2> 1%=0"B <2 = 27 bods
+» Where should data go in the cache?

" We need a mapping from memory addresses to specific
locations in the cache to make checking the cache for an
address fast

+» What is a data structure that provides fast lookup?
" Hash table!

11

W UNIVERSITY of WASHINGTON L17: Caches i CSE351, Autumn 2018

Review: Hash Tables for Fast Lookup

Insert: mod 10 0

Apply hash function to map data
to “buckets”
GOQ\S i (D ’FC\S“’/SIM‘)\& CGJCU\‘GHDV\

@ wse 0\“ budée'f_(“\,,QUH

12

W UNIVERSITY of WASHINGTON L17: Caches i CSE351, Autumn 2018

Place Data in Cache by Hashing Address
addresses are 6 bls: Ok X)(XX/XX

Memory Cache block num * offset
Block N\ﬁrm Block Data Index Block Data
oogal |, | | 00 |
0001 I 01 I | HereK=4B
0010 1 10 o and C/K =H4|<
0011 Lo 11 o i :
0100 111 Gqsﬁvi 00 oL 10 11
0101 o -
01f0) —— Map to cache index from block
S L address
1000 Lo
1001 [1 1 1 = Use next@z (C/K)=s bits}
1812 I ' ' " (block address) mod (# blocks in
]]]
1100 L1 cache) A
1101 | | | How Many bﬁs Aa ._I-
1110 : : : need ".b SPQU’{/ ever\/
1111 I se€t/index in my (ache 7

13

W UNIVERSITY of WASHINGTON L17: Caches i CSE351, Autumn 2018

Place Data in Cache by Hashing Address

Memory Cache
Block Addr Block Data Index Block Data _
L -0 [T 71
0007 I —>,01 111 | Here K =48B
0010 N 10 L andC/K =4
0011 | 11 T)
0100 T
0101 L)
o110 [Map to cache index from block
g L address
1000 L
1001 | 1 1 " | ets adjacent blocks fit in cache
1010 I 1 | simultaneously!
1011 Lo . _ _
1100 : : : - Consecutive blocks go in consecutive
1101 T 1 cache indices
1110 L1
1111 T

14

W UNIVERSITY of WASHINGTON L17: Caches i CSE351, Autumn 2018

Practice Question

+» 6-bit addresses, block size K =4 B, and our cache
holds S = 4 blocks.

+» A request for address Ox2A results in a cache miss.
Which index does this block get loaded into and
which 3 other addresses are loaded along with it?

= No voting for this question

P S
address: Ob Qm

~ohe O'”SG‘I’ 5 7
<V0W€§) Culue 2) / Tndex 2 (ol 0)

aa
Jdex OV LI (o 1)
coche p > along b Ob 101D ootzg

o1 |- O | £0ox29
—lo FTHeET B
[|

—

15

W UNIVERSITY of WASHINGTON L17: Caches i CSE351, Autumn 2018

Place Data in Cache by Hashing Address

Memory Cache
Block Addr Block Data Index Block Data _
0000 L »00 L
0001 T 01l T __HereK=4B
0010 L 10 Iy and C/K =4
0011 Lo 11 L1 |
0100 o1
1oL L Collision!
01]1:0] <1 '
orirgp v v o1 = This might confuse the cache later
1000 Lo
001 — when we access the data
| | |
1opof [TAT | = Solution?
1011 L
1100 I
1101 ;o
1110 L1
1111 T

16

W UNIVERSITY of WASHINGTON L17: Caches Il CSE351, Autumn 2018

Tags Differentiate Blocks in Same Index

Memory Cache
Block Addr Block Data Index ﬁ\;\ Block Data
oooo [T T T »00 |[[00 T
0001 11| 01 I 1| Here K =4B
0010 1] /10 01 T T — and C/K =4
0011 L1 11 || o1 L1
0100 TR \-/ -
o L, L Tag =res of address bits
otho [1 | g = resf,of addres
0111 111 . blts —S35 bg“é_ 97
1000 | | § 2 £ - 2.
1001 [¢ 1 | = Check this durmg a cache lookup
@to [T V1
1011 Lo
1100 11
1101 ;o
1110 I
1111 T

17

W UNIVERSITY of WASHINGTON L17: Caches II CSE351, Autumn 2018

Checking for a Requested Address

% CPU sends address request for chunk of data

= Address and requested data are not the same thing!
- Analogy: your friend # his or her phone number

« T10 address breakdown:
m-bit address: Tag (1) Index (s) | Offset (k)

\)
Y
Block Number

@ " Index field tells you where to look in cache
(2) = field lets you check that data is the block you want
(D = Offset field selects specified start byte within block

= Note: ¢ and s sizes will change based on hash function
” 18

W UNIVERSITY of WASHINGTON L17: Caches Il CSE351, Autumn 2018

Cache Puzzle Vote at http://PollEv.com/justinh

+» Based on the following behavior, which of the
following block sizes is NOT possible for our cache?

" Cache starts empty, also known as a cold cache

L hif: block wlh datx olready in
= Access (addr: hit/miss) stream: 5%y oot in $,é‘;\\s ods coinins Akt

« (14: miss), (15: hit), (16: miss) from Mem
L>®) (6 15 in a drHrent block
>@ 14 %._I'S are inthe same block
D plls blod< cortamg M iato 3

byte adde: 0 (2345 6 FF Al LIz |3 It \S/\"

B. 8 bytes [L L Y S
I<:L{; ﬁ::\;—/ Bl ocle blsd Wlsck bl e
: ytes = N TN sk
"_‘_—(6'¥ Y'
/D. 32 bytes| <" T
\<’1L. M—\/

E. We're lost... IK.=18 , Ko = 16 Bl

19

W UNIVERSITY of WASHINGTON L17: Caches i CSE351, Autumn 2018

Direct-Mapped Cache

Memory Cache
Block Addr Block Data Index Tag Block Data _
oojoo] | , , | »00 |00 T
00|01 111 01 |11 o1 Here K=48B
00[10| o 10 |o1 T —andC/K =4
oojryf | 4, 4 | SO o -
01100 | | |
01/01 S :
orlid [1 Hash function: (block address)
R o] L mod (# of blocks in cache)
10foof [T T T
100l | 1 1 " EFach memory address maps to
1ofz f T 1 exactly one index in the cache
10[11 .
loo T " Fast (and simpler) to find an
1ifoy | & T address |
111200 | 4
11|11 1 1 1

20

W UNIVERSITY of WASHINGTON L17: Caches II CSE351, Autumn 2018

Direct-Mapped Cache Problem |

2: 0b 001\ 0 'Oo
Memory Cache 4. 0b Ol yey 00
Block Addr Block Data Index Tag Block Data 1—&9 mo\ex O‘F‘[“T
Oom O T 1121 3| 00 X : : : =
00j01 A 01 | z° L1 Here K =4 B
0oj10l [E TN el 10 T —and C/K =4
oojl1y [, ; | 11 |22 Lo
orfool |1 1 1
o1joz [*=' T 1 :
o1lid [Fr=rtet= +» What happens if we access the
0111 T 9
oled T fq!sljorwml a Qresses
10[01 L1 m §8,24,8,6 24,8, ..7
18 ig' - = Conflict in cache (misses!)
]]]
11foof [1 1 i = Rest of cache goes unused
11|01 v _
o [+ Solution?

11|11 11 1

21

W UNIVERSITY of WASHINGTON

NONOUT AWDN-—=O

Associativity

L17: Caches Il

CSE351, Autumn 2018

+» What if we could store data in any place in the cache?

" More complicated hardware = more power consumed, slower

+ So we combine the two ideas:

= Each address maps to exactly one set

" Each set can store block in more than one way

1-way:
8 sets,
1 block each

direct mapped

Set

2-way:
4 sets,
2 blocks each

Set

4-way:
2 sets,
4 blocks each

Set

8-way:
1 set,
8 blocks

fully associativezz

