W UNIVERSITY of WASHINGTON

Caches |

CSE 351 Autumn 2018

Instructor:
Justin Hsia

Teaching Assistants:

Akshat Aggarwal
An Wang
Andrew Hu
Brian Dai

Britt Henderson
James Shin
Kevin Bi

Kory Watson
Riley Germundson
Sophie Tian
Teagan Horkan

HEARTBLEED MUST
BE THE WORST WEB
SECURITY LAPSE EVER.

WORST S0 FAR.
GVE US TIME.

Pr

L16: Caches |

T MEAN, THIS BUG ISNT

Just BRG‘KEI\.'IIr ENCRYPTION.

IT LETS WEBSITE VISITORS
MAKE. A SERVER DISPENSE

RANDOM MEMORY CONTENTS.

3

CSE351, Autumn 2018

ITS NOT JUST KEYS.
ITS TRAFAC DATA.
EMAILS. PASSLIORDS.
EROTIC FANACTION.

15 EVERYTHING
{DI"IFRQ“I}'SED?

WELL, THE. ATIACK 15
UMTED To DATA SDRED
IN COMPUTER MEMORY.

50 PAPER IS SAFE.
AND (LAY THBLETE.

OUR J'FHG!\HTDI‘%&'?DD
SEE, VEWL BE FNE

1

Alt text: | looked at some of the data dumps from vulnerable sites, and

it was ...

bad. | saw emails, passwords, password hints. SSL keys and

session cookies. Important servers brimming with visitor IPs. Attack
ships on fire off the shoulder of Orion, c-beams glittering in the dark
near the Tannhauser Gate. | should probably patch OpenSSL.

http://xkcd.com/1353/

W UNIVERSITY of WASHINGTON L16: Caches | CSE351, Autumn 2018

Administrivia

+» Homework 3 due tonight
» Lab 3 due next Friday (11/9)

» Midterm grades will be pushed to Canvas tomorrow

= Regrade requests on Gradescope due tonight by 10 pm
= Midterm Clobber Policy

- Final will be cumulative (half midterm, half post-midterm)

- If you perform better on the midterm portion of the final, you replace
your midterm score!

MT stddev
Fmt stddev

- Replacement score = (Fyr score — Fyp avg) X + MT mean

W UNIVERSITY of WASHINGTON L16: Caches | CSE351, Autumn 2018

Growth vs. Fixed Mindset

+» Students can be thought of as having either a
“growth” mindset or a “fixed” mindset (based on
research by Carol Dweck)

" “In a fixed mindset students believe their basic abilities,
their intelligence, their talents, are just fixed traits. They
have a certain amount and that's that, and then their goal
becomes to look smart all the time and never look dumb.”

" “In a growth mindset students understand that their talents
and abilities can be developed through effort, good teaching
and persistence. They don't necessarily think everyone's the
same or anyone can be Einstein, but they believe everyone
can get smarter if they work at it.”

L16: Caches |

W UNIVERSITY of WASHINGTON

Roadmap

CSE351, Autumn 2018

Memory & data
Integers & floats
x86 assembly
Procedures & stacks
Executables

Arrays & structs
Memory & caches
Processes

Virtual memory
Memory allocation
Javavs. C

C: Java:
car *c = malloc(sizeof (car)) Car ¢ = new Car();
c->miles = 100; c.setMiles (100) ;
c->gals = 17; c.setGals(17);
float mpg = get mpg(c); float mpg =
free(c); c.getMPG () ;
Assembly get_mpg:
. pushqgq Srbp
language' movq Srsp, %rbp
popg srbp
ret i
\ 4
Machine 0111010000011000
d . 100011010000010000000010
coge. 1000100111000010
110000011111101000011111
Computer

system:

W UNIVERSITY of WASHINGTON

L16: Caches |

Aside: Units and Prefixes

*

o®

*

/
*

SIZE PREFIXES (10* for Disk, Communication; 2* for Memory)

IEC prefixes are unambiguously base 2

Here focusing on large numbers (exponents > 0)
Note that 103 = 210
S| prefixes are ambiguous if base 10 or 2

SI Size Prefix Symbol | IEC Size Prefix Symbol
10° Kilo- K 210 Kibi- K1
106 Mega- M 220 Mebi- Mi
10° Giga- G 220 Gibi- Gi
1012 Tera- T 210 Tebi- Ti
1025 Peta- P 250 Pebi- Pi
1018 Exa- E 260 Exbi- E1
1021 Zetta- Z 270 Zebi- Zi
10%4 Yotta- Y 259 Y obi- Yi

CSE351, Autumn 2018

W UNIVERSITY of WASHINGTON L16: Caches | CSE351, Autumn 2018

How to Remember?

+» Will be given to you on Final reference sheet

<« Mnemonics

" There unfortunately isn’t one well-accepted mnemonic
 But that shouldn’t stop you from trying to come with one!

= Killer Mechanical Giraffe Teaches Pet, Extinct Zebra to Yodel

= Kirby Missed Ganondorf Terribly, Potentially Exterminating
Zelda and Yoshi

= xkcd: Karl Marx Gave The Proletariat Eleven Zeppelins, Yo
. https://xkcd.com/992/

" Post your best on Piazza!

W UNIVERSITY of WASHINGTON L16: Caches | CSE351, Autumn 2018

How does execution time grow with SIZE?

int array[SIZE];

int sum = 0;
for (int 1 = 0; 1 < 200000; i++) {

for (int j = 0; j < SIZE; Jj++) {

sum += arravyl[]];

} Time 1

Plot

>
SIZE

W UNIVERSITY of WASHINGTON L16: Caches | CSE351, Autumn 2018

Actual Data

45

40

35

30

25

Time

20

15

10

-] 0 2000 4000 6000 8000 10000

SIZE

W UNIVERSITY of WASHINGTON L16: Caches | CSE351, Autumn 2018

Making memory accesses fast!

+ Cache basics

+ Principle of locality
<~ Memory hierarchies
+» Cache organization

+» Program optimizations that consider caches

W UNIVERSITY of WASHINGTON L16: Caches | CSE351, Autumn 2018

Processor-Memory Gap

100,000

“Moore’s Law”
10,000 e e o UPIrOC lo e _

55%/year
(2X/1.5yr) \

g g 0 e
E Processor-Memory
2
E -1[]{]._ ...
o

-“:]._ ...

-1 | 1 | 1 |
1980 1985 1990 1995 2000 2005 2010
Year DRAM
1989 first Intel CPU with cache on chip 7%/year
1998 Pentium Il has two cache levels on chip (2X/10yrs)

10

W UNIVERSITY of WASHINGTON L16: Caches | CSE351, Autumn 2018

Problem: Processor-Memory Bottleneck

Processor performance

doubled about _
every 18 months Bus latency / bandwidth

evolved much slower

Main
CPU | Reg
Memory

Core 2 Duo: Core 2 Duo: ' ¥ ONE DAY SALE % __.
Can process at least Bandwidth ~ X Py e s "
256 Bytes/cycle 2 Bytes/cycle ' R

Latency
100-200 cycles (30-60ns)

Problem: lots of waiting on memory

cycle: single machine step (fixed-time) 11

W UNIVERSITY of WASHINGTON L16: Caches | CSE351, Autumn 2018

Problem: Processor-Memory Bottleneck

Processor performance

doubled about _
every 18 months Bus latency / bandwidth

evolved much slower

Main
CPU | Reg Cache
Memory

Core 2 Duo: Core 2 Duo: ! ¥ ONE DAY SALE ’ :
Can process at least Bandwidth > *
256 Bytes/cycle 2 Bytes/cycle | SAPRTSE PR S

Latency
100-200 cycles (30-60ns)

Solution: caches

cycle: single machine step (fixed-time) 12

W UNIVERSITY of WASHINGTON L16: Caches | CSE351, Autumn 2018

Cache &

+ Pronunciation: “cash”

= \We abbreviate this as “S”

+» English: A hidden storage space
for provisions, weapons, and/or treasures

+» Computer: Memory with short access time used for
the storage of frequently or recently used instructions
(i-cache/IS) or data (d-cache/DS)

" More generally: Used to optimize data transfers between
any system elements with different characteristics (network
interface cache, I/O cache, etc.)

13

W UNIVERSITY of WASHINGTON L16: Caches | CSE351, Autumn 2018

General Cache Mechanics

* Smaller, faster, more expensive

Cache 7 9 14 3 memory
* Caches a subset of the blocks

Data is copied in block-sized
transfer units

Memory 0 1 2 3 * Larger, slower, cheaper memory.
* Viewed as partitioned into “blocks”
4 5 6 7
8 9 10 11
12 13 14 15

14

W UNIVERSITY of WASHINGTON

L16: Caches | CSE351, Autumn 2018

General Cache Concepts: Hit

Cache

Memory

Request: 14 Data in block b is needed
- 3 2 3 Block b is in cache:
Hit!
Data is returned to CPU
0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15
00000000000 0OC0OCO®TO OO

15

W UNIVERSITY of WASHINGTON

L16: Caches |

CSE351, Autumn 2018

General Cache Concepts: Miss

Cache

Memory

Request: 12

7 12 14 3
12 Request: 12

0 1 2 3

4 5 6 7
8 9 10 11
12 13 14 15

Data in block b is needed

Block b is not in cache:
Miss!

Block b is fetched from
memory

Block b is stored in cache

* Placement policy:
determines where b goes

* Replacement policy:
determines which block
gets evicted (victim)

Data is returned to CPU
16

W UNIVERSITY of WASHINGTON L16: Caches | CSE351, Autumn 2018

Why Caches Work

+» Locality: Programs tend to use data and instructions
with addresses near or equal to those they have used
recently

17

L16: Caches |

W UNIVERSITY of WASHINGTON

Why Caches Work

CSE351, Autumn 2018

+» Locality: Programs tend to use data and instructions
with addresses near or equal to those they have used

recently

+» Temporal locality:

= Recently referenced items are likely
to be referenced again in the near future

\/

block

18

L16: Caches |

W UNIVERSITY of WASHINGTON

Why Caches Work

CSE351, Autumn 2018

Locality: Programs tend to use data and instructions
with addresses near or equal to those they have used

*

recently

\/

Temporal locality:

= Recently referenced items are likely
to be referenced again in the near future (—7

Spatial locality:

" |tems with nearby addresses tend
to be referenced close together in time

*

How do caches take advantage of this?

block

block

19

W UNIVERSITY of WASHINGTON L16: Caches |

CSE351, Autumn 2018

Example: Any Locality?

0; i < n; 1i++)
sum += al[i];
}

return sum;

<« Data:

= Temporal: sumreferenced in each iteration

= Spatial: array a [] accessed in stride-1 pattern

<+ Instructions:

" Temporal: cycle through loop repeatedly

= Spatial: reference instructions in sequence

20

W UNIVERSITY of WASHINGTON

Locality Example #1

L16: Caches |

int sum array rows (int a[M]

{
int 1, j, sum = 0;
for (i = 0; i < M; i++)
for (3 = 0;, 7 < N;
sum += al[i][3];
return sum;
}

[N]1)

J4+)

CSE351, Autumn 2018

21

W UNIVERSITY of WASHINGTON

Locality Example #1

L16: Caches |

int sum array rows (int a[M] [N])
{
int 1, j, sum = 0;
for (i = 0; i < M; 1i++)
for (3 = 0;, 7 < N;
sum += al[i][3];
return sum;
}

Layout in Memory

76 92 108

Note: 76 is just one possible starting address of array a

M=3,N=4
alO][O] |[a[O][1]||alO](2]||alO][3]
al1][O] |[al1][2]||al1](2]||al1][3]
al2][0] |al2][1]||al2][2] || al2][3]
Access Pattern: 1)| a[0]
stride =7 2)] al[0]

3)] a[0]

4)1 a[0]

5)l a[l]

o)l a[l]

Y al[l]

8)l a[l]

Nl al2]

10)| al[2]

11)| al2]

12)| al2]

CSE351, Autumn 2018

W UNIVERSITY of WASHINGTON

Locality Example #2

L16: Caches |

int sum array cols(int a[M]

{
int 1, j, sum = 0;
for (jJ = 0; J < N; J++4)
for (1 = 0; 1 < M;
sum += ali][3];
return sum;
}

[N])

i4+)

CSE351, Autumn 2018

23

W UNIVERSITY of WASHINGTON L16: Caches | CSE351, Autumn 2018

Locality Example #2

int sum array cols(int a[M] [N]) M=3,N=4

{ a[o][0] || alO][1]||alO][2]||alO][3]
int 1, j, sum = 0;

a[1][0]]|al1](1]||al1][2]]|al1][3]

for (7 = 0; J < N; J++)
for (i = 0; 1 < M; 1i++) al2][0]||al2][1]]|al2][2] || al2][3]
sum += al[i] [J];

Access Pattern: 1)| a[0][0]

SR S stride = ? 2)[ar11 (0]

} 3)] a[2][0]
4) al0] [1]

Layout in Memory o) alll (1]
a a a a a a a a a a a a 6) a[2] [l]
to1{ro1|ror|rorfraafrayfrarfrarfr21|r21|r21]r2 7)) afolfz]
to1{r11|r21|31]cor|raafr21|r31fror|r11|r21]3 8) al1]1[2]
9 al2] [2]

70 92 108 10)| al0] [3]
1) ar1113]

12)[ar2113]

24

L16: Caches |

CSE351, Autumn 2018

W UNIVERSITY of WASHINGTON

Locality Example #3
int sum array 3D(int a[M] [N][L])
{
int 1, j, k, sum = 0O;
for (i = 0; i < N; 1i++)
for (7 = 0; 7 < L; J++)
for (k = 0; k < M; k++)
sum += al[k][i]1[7];
return sum;
}

+» What is wrong
with this code?

« How can it be
fixed?

al[2][0]

[0]

a[2][0][1]

a[2][0][2]

a[2][0][3]

a[11][0]

[0]

Ha[11[0][1]

a[1][0][2]

a[0][0][0]

Ha[O01[0][1]

| <5 S

IV L)L

a[0][0][2]

]aNHOHﬂ

a[1][0][3]

z1rz][3]

a[0][1][0]

=8 E e

;amulﬂﬂjaMHlﬂﬂjamﬂluﬂ

113]

z1z (3]

afo][2][o]|

alo]l21011

al0][2][2]

|a[01[2][3]

113]

€«<—m-= 2

«<—m=1

«<—m=0

25

L16: Caches | CSE351, Autumn 2018

W UNIVERSITY of WASHINGTON

Locality Example #3

int sum array 3D(int a[M] [N] [L]) . .

{ — — What |s. wrong
int i, j, k, sum = 0; with this code?
for (i = 0; i < N; 1i++)

for (7 = 0; 7 < L; J++)
for (k = 0; k < M; k++) | <« How can it be
sum += alk][i]1[3]; .
fixed?

return sum;

}
Layout in Memory (M=?,N=3,L=4)

a a a a a a a a a a a a a a a a a a a a

(01 { (01| [0] (O] (0] (O] (O] [O]f[O]{[O](CO](COTQIL](L]|L]|l2]|[L]|[L]|[L]|[2]|[2]][2]|[2]][2] . o o
(ol ol f o] fCo]{ 2] || 2| 2|C2]| 2|2 {21} (o] | o] | o]| o] |2]|L]|2]|L]|[2]|[2]][2]][2]
(O { (21| (2] | (31| (0] | (2] | (2] (31| CO]|[2]|C2]{C31)C0]{[2]{[2]|(3]]|[0]|[1]|[2]|[3]|[0]|[1]]|[2]][3]

76 92 108 124 140 156 172

26

W UNIVERSITY of WASHINGTON L16: Caches | CSE351, Autumn 2018

Cache Performance Metrics

+» Huge difference between a cache hit and a cache miss

= Could be 100x speed difference between accessing cache
and main memory (measured in clock cycles)

» Miss Rate (MR)

" Fraction of memory references not found in cache (misses /
accesses) = 1 - Hit Rate

% Hit Time (HT)

" Time to deliver a block in the cache to the processor

- Includes time to determine whether the block is in the cache

% Miss Penalty (MP)

= Additional time required because of a miss

27

W UNIVERSITY of WASHINGTON L16: Caches | CSE351, Autumn 2018

Cache Performance

+» Two things hurt the performance of a cache:

" Miss rate and miss penalty

+» Average Memory Access Time (AMAT): average time
to access memory considering both hits and misses
AMAT = Hit time + Miss rate x Miss penalty
(abbreviated AMAT = HT + MR x MP)

+» 99% hit rate twice as good as 97% hit rate!
= Assume HT of 1 clock cycle and MP of 100 clock cycles
= 97%: AMAT =
" 99%: AMAT =

28

W UNIVERSITY of WASHINGTON L16: Caches | CSE351, Autumn 2018

Peer Instruction Question

+ Processor specs: 200 ps clock, MP of 50 clock cycles,
MR of 0.02 misses/instruction, and HT of 1 clock cycle

AMAT =

+» Which improvement would be best?
= Vote at http://PollEv.com/justinh

A.

B. Miss penalty of 40 clock cycles

C. MR of 0.015 misses/instruction

29

W UNIVERSITY of WASHINGTON L16: Caches | CSE351, Autumn 2018

Can we have more than one cache?

+» Why would we want to do that?
= Avoid going to memory!
+ Typical performance numbers:
" Miss Rate
- L1 MR =3-10%
- L2 MR = Quite small (e.g. < 1%), depending on parameters, etc.
" Hit Time
« L1 HT =4 clock cycles
« L2 HT =10 clock cycles

= Miss Penalty
+ P =50-200 cycles for missing in L2 & going to main memory
- Trend: increasing!

30

W UNIVERSITY of WASHINGTON L16: Caches | CSE351, Autumn 2018

An Example Memory Hierarchy

A -
<1ns 5-10s g
registers p—

1ns on-chip L1
Smaller, cache (SRAM)
faster,
costlier .
per by cache (SRAM) e
Larger 100 ns main memory 15-30 min
slower, (DRAM)
cheaper
or byte 150,000 ns SSD 31 days
per by local secondary storage
10,000,000 ns Disk (local disks)
(10 ms)
1-150 ms remote secondary storage
(distributed file systems, web servers)

W UNIVERSITY of WASHINGTON L16: Caches | CSE351, Autumn 2018

Summary

+» Memory Hierarchy

= Successively higher levels contain “most used” data from
lower levels

= Exploits temporal and spatial locality

= Caches are intermediate storage levels used to optimize

data transfers between any system elements with different
characteristics

+ Cache Performance
" |deal case: found in cache (hit)
" Bad case: not found in cache (miss), search in next level

= Average Memory Access Time (AMAT) = HT + MR x MP
- Hurt by Miss Rate and Miss Penalty

32

