W UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Autumn 2018

Structs & Alignment

CSE 351 Autumn 2018

Instructor:
Justin Hsia

Teaching Assistants:

Akshat Aggarwal MAN, YOURE BEING INCONSISTENT
An Wang WITH YOUR ARRAY INDICES. SOME
Andrew Hu ARE FROM ONE, SOME FrROM ZERD. ?

: . DIFFERENT TASKS CAWL FOR WAIT WHAT¢
Brian Dai DIFFERENT CONVENTIONS. TO ,
Britt Henderson QUOTE STANFORD ALGOR ITHAS { o HATS WHAT HE

. ON EN | ASKE.
James Shin EIPERT DOND IOWTH, Him ABOUT ?i.K °
Cevin Bi WHO ARE You? HOw DID.
evin Bi YOU GET IN MY HOUSE? { /

Kory Watson) /
Riley Germundson : ‘
Sophie Tian
Teagan Horkan

http://xkcd.com/163/

W UNIVERSITY of WASHINGTON L14: Structs & Alignment

Administrivia

» Lab 2 due tonight
» Homework 3 due next Friday (11/2)
» Lab 3 released next Wednesday (10/31)

+» Midterm (10/29, 5:10-6:20 pm, KNE 210 & 220)
" Come early to get exam and settle in

"= Make a cheat sheet! — two-sided letter page, handwritten

« Extra office hours
= Mon 10/29, 11-12 & 2:30-3:30, CSE 438

W UNIVERSITY of WASHINGTON

Roadmap
C:

L14: Structs & Alignment

Java:

car *c = malloc(sizeof (car));
c->miles = 100;

c->gals = 17;

float mpg = get mpg(c);

Car ¢ = new Car();

c.setMiles (100) ;
c.setGals(17);
float mpg =

CSE351, Autumn 2018

x86 assembly
Procedures & stacks
Executables

free (c) ; c.getMPG() ;
Assembly get_mpg:
. pushg Srbp
language' movq Srsp, %rbp
popg srbp
ret i
\ 4
Machine 0111010000011000
code: 100011010000010000000010
) 1000100111000010
110000011111101000011111
Computer

system:

W UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Autumn 2018

Assembly Programmer’s View

CPU Addresses Memory
Srip] Stack
Data
< > v
CFEF|ZF Instructi 1
nstructions :
Selor) Dynamic Data
(Heap)
» Programmer-visible state SZUEREE
= PC: the Program Counter (3rip in x86-64) Literals
- Address of next instruction Instructions
" Named registers
- Together in “register file” * I\/Iemory
Heavily used program data = Byte-addressable array
= Condition codes " Code and user data
- Store status information about most recent * Includes the Stack (for

arithmetic operation supporting procedures)

Used for conditional branching

CSE351, Autumn 2018

W UNIVERSITY of WASHINGTON L14: Structs & Alignment

X86-64 Instructions

<~ Data movement

" mov, movs, movz,

« Arithmetic

" 3dd, sub, shl, sar, Ilea,

» Control flow

" cmp, test, J*, set*,

» Stack/procedures
" push, pop, call, ret,

W UNIVERSITY of WASHINGTON

L14: Structs & Alignment

Turning C into Object Code

+» Codeinfiles pl.c p2.c

CSE351, Autumn 2018

+» Compile with command: gcc -Og pl.c p2.c -0 p

= Use basic optimizations (-Og) [New to recent versions of GCC]

= Put resulting machine code in file p

text

text

binary

binary

C program (pl.c p2.c)

l Compiler (gcc -0g -9)

Asm program (pl.s p2.s)

l Assembler (gcc -c or as)

Object program (pl.o p2.0)

Static libraries (. a)

l Linker (gCC or V

Executable program (p)

Assembling

W UNIVERSITY of WASHINGTON

L14: Structs & Alignment

« Executable has addresses

I9|quIasse

" gcc —g pcount.c —o pcount

CSE351, Autumn 2018

b8
48
74
53
48
48
e8
83
48
5b
3

00000000004004f6
4004f6:
4004fb:
4004fe:
400500:
400501:
400504 :
400507:
40050c:
40050f:
400512:
400513:

00
85
13

89
dl
ea
el
01

c3

<pcount r>:

00 00 0O
ff

fb
ef
ff £ff£f f£f
01
d8

mov
test
je
push
mov
shr
callq
and
add

pop

rep ret

S0x0, $Seax

Srdi, $rdi

400513 <pcount r+0x1d>
Srbx

Srdi, $Srbx

rdi

4004f6 <pcount r>
SO0x1, $ebx

Srbx, srax

Srbx

" objdump —-d pcount

W UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Autumn 2018

A Picture of Memory (64-bit view)

OOOOOOOOOO4004f6 <pcount r>:
4004f6: b8 00 00 00 00 mov $0x0, 3eax
4004fb: 48 85 ff test $rdi, $rdi
4004fe: 74 13 je 400513 <pcount r+0x1d>
400500: 53 push Srbx
400501: 48 89 fb mov $rdi, $rbx
400504: 48 dl ef shr Srdi
400507: e8 ea ff ff ff callg 4004£f6 <pcount r>
40050c: 83 e3 01 and $0x1, sebx
40050f: 48 01 dS8 add Srbx, srax
400512: ©5b pop Srbx
400513: rep ret

08 119 2la 3|lb 4|c 5|d 6le 7|t

0x00
0x08
0x10

b8 00 | 0x4004f£0
00 00 00 48 85 ff 74 13 | 0x4004£8
53 48 89 fb 48 dl ef e8 | 0x400500
ea ff ff ff 83 e3 01 48 | 0x400508
01 d8 5b 0x400510

W UNIVERSITY of WASHINGTON

Roadmap
C:

L14: Structs & Alignment

Java:

car *c = malloc(sizeof (car));
c->miles = 100;

c—->gals = 17;

float mpg = get mpg(c);

Car ¢ = new Car();
c.setMiles (100);
c.setGals(17);
float mpg =

CSE351, Autumn 2018

Memory & data
Integers & floats
x86 assembly
Procedures & stacks
Executables

free(c) ; c.getMPG () ; Arrays & structs
— - —_— Memory & caches
Assembly get_mpg: Processes
. pushg Srbp)
language: movq 4rsp, rbp Virtual memory
.. Memory allocation
popq srbp Javavs. C
ret ¢‘
Machine 0111010000011000
ode: 100011010000010000000010
code. 1000100111000010
110000011111101000011111
Computer

system:

W UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Autumn 2018

Peer Instruction Question

+» Which of the following statements is FALSE?
= Vote at http://PollEv.com/justinh

int seal4][5]; 91819 5|9 8(1(0 5|9 8(1]0 3|9 8(1(1(5

76 96 116 136 156

A.

B. sea[l] [1] makes two memory accesses

C. sea[2] [1] will always be a higher address
than sea[l] [2]

D. sea[2] is calculated using only 1lea
E. We're lost...

10

W UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Autumn 2018

Data Structures in Assembly

« Arrays
" One-dimensional
" Multi-dimensional (nested)
" Multi-level

« Structs
= Alignment

11

W UNIVERSITY of WASHINGTON

Structs in C

L14: Structs & Alignment

+» Way of defining compound data types

+ A structured group of variables, possibly including other structs

typedef struct {
int lengthInSeconds;
int yearRecorded;

} Song;

Song songl;

songl.lengthInSeconds
songl.yearRecorded

Song song2;

songZ.lengthInSeconds
songZ.yearRecorded

= 213;
= 1994;

= 248;
= 1988;

CSE351, Autumn 2018

typedef struct {

int lengthInSeconds;
int yvearRecorded;

} Song;

rsung1

lengthInSeconds: 213
vearRecorded: 1994

rsungE

lengthInSeconds: 248
yvearRecorded: 1988

12

W UNIVERSITY of WASHINGTON L14: Structs & Alignment

CSE351, Autumn 2018

Struct Definitions

« Structure definition:

= Does NOT declare a variable

struct name {
/* fields */

: , c
" Variable type is “struct name”)7
-~ pointer —— Easy to forget
z .
struct name namel, *pn, name ar[3]; semicolon!
— =
\

array

% Joint struct definition and typedef

" Don’t need to give struct a name in this case

struct nm {
/* fields */
} i
typedef struct nm name;
name nl;

—

typedef struct {
/* fields */

} name;

name nl;

W UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Autumn 2018

Scope of Struct Definition

+» Why is placement of struct definition important?

= What actually happens when you declare a variable?

- Creating space for it somewhere!

= Without definition, program doesn’t know how much space

struct data { |e«— Size= bytes | struct rec {
int ar[4]; int a[4];
long d; long 1;
} struct rec* next;
Size = bytes—— | };

+» Almost always define structs in global scope near the
top of your C file

= Struct definitions follow normal rules of scope

14

L14: Structs & Alignment CSE351, Autumn 2018

W UNIVERSITY of WASHINGTON

Accessing Structure Members

+» @Given a struct instance, access
member using the . operator: |struct rec |
int af4];
struct rec rl; long 1i;
rl.1 = val; struct rec *next;
}i

+» @Given a pointer to a struct:

struct rec *r;
for r to point to

r = &rl; // or malloc space

We have two options:
- Use * and . operators: (*r) .1 = val;
r->1 = val;

- Use —> operator for short:

+» In assembly: register holds address of the first byte

= Access members with offsets

15

L14: Structs & Alignment CSE351, Autumn 2018

W UNIVERSITY of WASHINGTON

class Record { ... }

java Side-nOte Record x = new Record () ;

+» An instance of a class is like a pointer to a struct

containing the fields
" (Ignoring methods and subclassing for now)
" SolJava’s x.f islikeC's x->f or (*x).f

% In Java, almost everything is a pointer (“reference”) to

an object
" Cannot declare variables or fields that are structs or arrays

= Always a pointer to a struct or array
= So every Java variable or field is < 8 bytes (but can point to
lots of data)

16

W UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Autumn 2018

Structure Representation

struct rec { T
int af4];
long 1;
struct rec *next; a 1 next
bo*r;
0 16 24 32

+» Characteristics
" Contiguously-allocated region of memory
= Refer to members within structure by names
®" Members may be of different types

17

W UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Autumn 2018

Structure Representation

struct rec { T
int af4];
long 1;
struct rec *next; a 1 next
bo*r;
0 16 24 32

% Structure represented as block of memory
= Big enough to hold all of the fields

+ Fields ordered according to declaration order

= Even if another ordering would be more compact

+» Compiler determines overall size + positions of fields

" Machine-level program has no understanding of the
structures in the source code

18

W UNIVERSITY of WASHINGTON

L14: Structs & Alignment

Accessing a Structure Member

struct rec {

int al4];

long 1i;

struct rec *next;
Sy

+» Compiler knows the
offset of each member
within a struct

" Compute as
*(r+offset)
- Referring to absolute

offset, so no pointer
arithmetic

r r—->1
a 1 next
0 16 24 32

long get 1 (struct rec *r)

{

return r—>1;

}

r in %rdi, index 1in %rsi
movg 16 (srdi), S%Srax
ret

CSE351, Autumn 2018

19

W UNIVERSITY of WASHINGTON L14: Structs & Alignment

CSE351, Autumn 2018

Exercise: Pointer to Structure Member

struct rec { T
int af4];
long 1; M
struct rec *next; a 1 next
bo*r;
0 16 24 32

long* addr of i (struct rec *r)

{

r 1n $rdi

return & (r->next) ;

}

o
. srax
return & (r->1); 7 ©
} ret
struct rec** addr of next (struct rec *r) # r in %rdi
{
, srax

ret

20

L14: Structs & Alignment

CSE351, Autumn 2018

W UNIVERSITY of WASHINGTON

Generating Pointer to Array Element

struct rec {

int al4];

long 1i;

struct rec *next;
Sy

+» @Generating Pointer to
Array Element

= Offset of each structure
member determined at
compile time

" Compute as:
r+4*index

r r+4*index
a 1 next
0 16 24 32

int* find addr of array elem
(struct rec *r, long index)

{

return &r->a[index];

} N\

A"
&(r->a[index])

r 1n %rdi, index 1n $%rsi
leaq (%rdi,%rsi,4), %Srax

ret

21

W UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Autumn 2018

Review: Memory Alighment in x86-64

+ Aligned means that any primitive object of K bytes
must have an address that is a multiple of K

+ Aligned addresses for data types:

1 char No restrictions
short Lowest bit must be zero: ...0,
4 int, float Lowest 2 bits zero: ...00,

long, double, * Lowest 3 bits zero: ...000,
16 long double Lowest 4 bits zero: ...0000,

22

W UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Autumn 2018

Alignment Principles

+ Aligned Data
" Primitive data type requires K bytes
= Address must be multiple of K
= Required on some machines; advised on x86-64

+» Motivation for Aligning Data

" Memory accessed by (aligned) chunks of bytes
(width is system dependent)
- Inefficient to load or store value that spans quad word boundaries
 Virtual memory trickier when value spans 2 pages (more on this later)

*" Though x86-64 hardware will work regardless of alignment of
data

23

W UNIVERSITY of WASHINGTON

L14: Structs & Alignment

Structures & Alignment

+» Unaligned Data

CSE351, Autumn 2018

struct S1 {

char c;
c| i[0] i[1] v int i[2];
p ptl p+5 p+9 p+17 eitlalE
b *ps
+» Aligned Data
" Primitive data type requires K bytes
= Address must be multiple of K
c i[0] i[1] v
p+0 o4 p+8 p+16 p+24
S {k S S
Multiple of~{ Multiple of 8
Multiple of 8 internal fragmentation Multiple of 8

24

W UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Autumn 2018

Satisfying Alignment with Structures (1)

» Within structure: EELEE DL
_ S _ char c;
" Must satisfy each element’s alignment requirement int i[2];
+» Qverall structure placement double v;
: : b *p;
= Each structure has alignment requirement K.« P

« Kax = Largest alighment of any element
- Counts array elements individually as elements

+~ Example:
" Kmax =8, dueto double element

C 1[0] 1[1] \Y,
p+0 o4 p+8 p+16 p+24

a {k A

Multiple of~{ Multiple of 8
Multiple of 8 internal fragmentation

»

25

W UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Autumn 2018

Satisfying Alignment with Structures (2)

+ Can find offset of individual fields Stzuc‘;lsz {
. ou e Vv,
using offsetof () int i[2];

" Needto#include <stddef.h> char c;

= Example: offsetof (struct S2,c) returns16 | *Pi

+ For largest alighment requirement K,,,«,
overall structure size must be multiple of K4«

= Compiler will add padding at end of
structure to meet overall structure
alignment requirement

\Y% 1[0] 1[1] C
p+0 p+38 pt+16 pt+24

a

Multiple of 8 external fragmentation Multiple of 8 y

CSE351, Autumn 2018

W UNIVERSITY of WASHINGTON

L14: Structs & Alignment

Arrays of Structures

. . struct S2 {
» Overall structure length multiple of K,,, ;. ontatln
+ Satisfy alignment requirement i}‘zt 12l
. char ¢C;
for every element in array } a[10];
al0] a[l] al2] . e
a+0 a+24 a+48 at’’?2
\Y 1[0] 1[1] C

a+24 at32

external fragmentation

a+40 /‘ a+48

27

W UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Autumn 2018

Alignment of Structs

+» Compiler will do the following:
" Maintains declared ordering of fields in struct

= Each field must be aligned within the struct
(may insert padding)
- offsetof can be used to get actual field offset

" QOverall struct must be aligned according to largest field

= Total struct size must be multiple of its alignment
(may insert padding)
- sizeof should be used to get true size of structs

28

W UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Autumn 2018

How the Programmer Can Save Space

+» Compiler must respect order elements are declared in

= Sometimes the programmer can save space by declaring
large data types first

struct S4 { struct S5 {
char c; int 1i;
int i; ‘ char c;
char d; char d;
B oF B oF
C 1 d 1 cld

29

W UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Autumn 2018

. . Vote on sizeof(struct old):
Peer Instruction Question . o i com/iustinh

J/

» Minimize the size of the struct by re-ordering the vars

struct old { struct new {
int i; int i;

short s[3];

’

float f; ;
5o 5

«» What are the old and new sizes of the struct?

sizeof(structold) = sizeof(struct new) =
A.
B. 22bytes
C. 28 bytes
D. 32bytes
E. We'relost...

30

W UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Autumn 2018

Summary

« Arraysin C
= Aligned to satisfy every element’s alignment requirement

< Structures

= Allocate bytes in order declared
®= Pad in middle and at end to satisfy alignment

31

