W UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Autumn 2018

Structs & Alignment

CSE 351 Autumn 2018

Instructor:
Justin Hsia

Teaching Assistants:

Akshat Aggarwal MAN, YOURE BEING INCONSISTENT
An Wang WITH YOUR ARRAY INDICES. SOME
Andrew Hu ARE FROM ONE, SOME FrROM ZERD. ?

: . DIFFERENT TASKS CAWL FOR WAIT WHAT¢
Brian Dai DIFFERENT CONVENTIONS. TO ,
Britt Henderson QUOTE STANFORD ALGOR ITHAS { o HATS WHAT HE

. ON EN | ASKE.
James Shin EIPERT DOND IOWTH, Him ABOUT ?i.K °
Cevin Bi WHO ARE You? HOw DID.
evin Bi YOU GET IN MY HOUSE? { /

Kory Watson) /
Riley Germundson : ‘
Sophie Tian
Teagan Horkan

http://xkcd.com/163/

W UNIVERSITY of WASHINGTON L14: Structs & Alignment

Administrivia

» Lab 2 due tonight
» Homework 3 due next Friday (11/2)
» Lab 3 released next Wednesday (10/31)

+» Midterm (10/29, 5:10-6:20 pm, KNE 210 & 220)
" Come early to get exam and settle in

"= Make a cheat sheet! — two-sided letter page, handwritten

« Extra office hours
= Mon 10/29, 11-12 & 2:30-3:30, CSE 438

W UNIVERSITY of WASHINGTON

Roadmap
C:

L14: Structs & Alignment

Java:

car *c = malloc(sizeof (car));
c->miles = 100;

c->gals = 17;

float mpg = get mpg(c);

Car ¢ = new Car();

c.setMiles (100) ;
c.setGals(17);
float mpg =

CSE351, Autumn 2018

x86 assembly
Procedures & stacks
Executables

free (c) ; c.getMPG() ;
Assembly get_mpg:
. pushg Srbp
language' movq Srsp, %rbp
popg srbp
ret i
\ 4
Machine 0111010000011000
code: 100011010000010000000010
) 1000100111000010
110000011111101000011111
Computer

system:

W UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Autumn 2018

Assembly Programmer’s View

’Ik'\s"\ef addvr
CPU Memory
genersl pur pose regicters Addresses ‘ |
ec:éﬁag srip|ps ' tack
Data OHURREY -
)y > N &\[Mrw(_
conditin| [CE|ZE | 1) g
co des crllon . Instructions Dynamic Data
(Heap)
» Programmer-visible state S PR g
. -6\. Ic
= PC: the Program Counter (3rip in x86-64) Literals s
- Address of next instruction > fhstructions
= Named registers L buer aibr
- Together in “register file” * I\/Iemory
Heavily used program data = Byte-addressable array
= Condition codes " Code and user data
- Store status information about most recent * Includes the Stack (for

arithmetic operation supporting procedures)

Used for conditional branching

W UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Autumn 2018

s sedien: b, w L q
1, z, 4, \oy*eJ

X86-64 Instructions

Data movement

" MOV, MOVS, MOVZ, ... opeank Hypes! Imm 3
RQ\S (70
(D« Arithmetic Mo ()

" 3dd, sub, shl, sar, Ilea, .
Labels ave addresses

Control flow

" cmp, test, J*, set*,

Stack/procedures
" push, pop, call, ret,

W UNIVERSITY of WASHINGTON

L14: Structs & Alignment CSE351, Autumn 2018

Turning C into Object Code

+» Codeinfiles pl.c p2.c

\/
0’0

Compile with command: gcc -Og pl.c p2.c -0 p

= Use basic optimizations (-Og) [New to recent versions of GCC]

= Put resulting machine code in file p

text
© da‘b\“h/,oes
@]mLQ'S (
-

text

C program (pl.c p2.c)

l Compiler (gcc -0g -9)

Asm program (pl.s p2.s)

® michine ©AE [)
lbels go in Fables /[(ymbol /relocaion A
ssembler —c or
® pemory setivas << dfa / Aexct) (gcc -c oras)
binary | Object program (p1.0 p2.o) Static libraries (. a)

firalize dddveyes
fem\ve Vé‘F eences

I

o

inary

l Linker (gCC or V

Executable program (p)

W UNIVERSITY of WASHINGTON

Assembling

L14: Structs & Alignment

« Executable has addresses (romoe labels)

00
85
13

89

c3

00000000004004f6

4004f6: bS8

4004fb: 48

4004fe: 74

2 400500: 53

@ 400501: 48

3 400504: 48

S 400507: e8

o 40050c: 83

wsed hs be « 40050f: 48
\a\oc,{ 400512: 5b
(B4 o ,u,-_)-——>4o/2513: £3

.

<pcount r>:
00 00 0O
ff

fb
ef
ff £ff£f f£f
01
d8

mov S0x0, $Seax
test Srdi, srdi
je 400513 <pcount r+0xl1d>
push Srbx
mov Srdi, $Srbx
rdi

callg ~4004f6 <pcount r>
and SO0x1, $ebx

add srbx, $Srax

pop Srbx

rep ret

L PCM‘\'_(+0Ox\& = 30 b\/‘!‘e; e Stary 8" ‘:cew\’\:r

" gcc —g pcount.c —o pcount

" objdump —-d pcount

CSE351, Autumn 2018

W UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Autumn 2018

A Picture of Memory (64-bit view)

[00000000004004€6 <pcount r>:
4004£6: [EB 00 00 00 06y mov $0x0,%eax
4004fb: x:@ 85 ff test %rdi, %rdi
4004fe: 13 je 400513 <pcount r+0x1d>
400500: 53 push Srbx
400501: 48 89 fb mov srdi, $rbx
400504: 48 dl ef shr srdi
400507: e8 ea ff ff ff callg 4004£f6 <pcount r>
40050c: 83 e3 01 and $0x1, $ebx
40050f: 48 01 dS8 add Srbx, srax
400512: ©5b pop Srbx

| kf29513; \ - » rep ret)
ind::;;} soészw4@5 018 119 2]a 3lb 4lc 5|d 6le 7|f
G resses 0x00
0x08

0x10

b8l | 00 | ox4004f0

|
Unalign ed, baf 00 | 00 | 00 [T@8)| 85 | £f | 74 | 13 | 0x4004£8
more (ompact” 53 | 48 | 89 | fb | 48 | d1 | ef | e8 | 0x400500

ea ff ff ff 83 e3 01 48 | 0x400508
01 d8 5b 0x400510

W UNIVERSITY of WASHINGTON

Roadmap
C:

L14: Structs & Alignment

Java:

car *c = malloc(sizeof (car));
c->miles = 100;

c—->gals = 17;

float mpg = get mpg(c);

Car ¢ = new Car();
c.setMiles (100);
c.setGals(17);
float mpg =

CSE351, Autumn 2018

Memory & data
Integers & floats
x86 assembly
Procedures & stacks
Executables

free(c) ; c.getMPG () ; Arrays & structs
— - —_— Memory & caches
Assembly get_mpg: Processes
. pushg Srbp)
language: movq 4rsp, rbp Virtual memory
.. Memory allocation
popq srbp Javavs. C
ret ¢‘
Machine 0111010000011000
ode: 100011010000010000000010
code. 1000100111000010
110000011111101000011111
Computer

system:

W UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Autumn 2018

—

o WILI3 Iy

Ol -a)Or ,?2?273:"
Peer Instruction Question [}

Co\uvn-bna)Or: [f
+» Which of the following statements is FALSE? ’z’

= \/ote at http://PollEv.com/justinh

(I 1]
B A
int sea[4]1[5]; |9|8|1|9|5]|9l8l|1|0|5|9|8|1|0|3|9|8|1|ll|5

———

76 96 116 136 156
sea[6) —
seal]

A.
L \reS) re,‘hwr\.) L
|B. sea[I][I] makes two memory accesses|

NG, ot 3Tagle MEMDrY ACCCSS

C. sea[2] [1] will always be a higher address
than Sea [1] [2] \(95, beanse C is YO) O

D. sea[2] is calculated using only 1lea
Mes J sex(2) velurns aAdYEﬁ 6" OYro.)d rowo
E. We’'re lost...

10

W UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Autumn 2018

Data Structures in Assembly

« Arrays
" One-dimensional
" Multi-dimensional (nested)
" Multi-level

« Structs
= Alignment

11

W UNIVERSITY of WASHINGTON

Structs in C

L14: Structs & Alignment

+» Way of defining compound data types

+ A structured group of variables, possibly including other structs

typedef struct {

int yearRecorded;
} Song;

Song songl;

songl.lengthInSeconds
songl.yearRecorded

Song song2;

songZ.lengthInSeconds
songZ.yearRecorded

int lengthInSeconds;

= 213;
= 1994;

= 248;
= 1988;

CSE351, Autumn 2018

tvp%\efstruct{

int lenqthlnﬁecnnds,
int yvearRecorded;

} Song;

rsung1

lengthInSeconds: 213
vearRecorded: 1994

rsungE

lengthInSeconds: 248
yvearRecorded: 1988

12

W UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Autumn 2018

... 'Jf\/rd\ée Lmsfghea long int &(li ;
Struct Definitions 3 lpe | Meoreme

{\/ol.w choice
struct qhame {

« Structure definition:

"= Does NOT declare a variable /* fields */
" Variable type is “struct name” b7
-~ pointer — Easy to forget
struct name namﬂel, *pLE, name ar[3]; semicolon!
— =
\ insfance \ array
% Joint struct definition and typedef N
o
= Don’t need to give struct a name in this case (*“‘
(Didine (struct nm { combined| typede §truct
Syt 4 /* fields */ ‘ /* fields */
X name;
@ypedef | typedef struct nm @amsy name nl;
(Mameonl;

W UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Autumn 2018

Scope of Struct Definition

+» Why is placement of struct definition important?

= What actually happens when you declare a variable?

- Creating space for it somewhere!

= Without definition, program doesn’t know how much space

struct data { |e«— Size= Z—L(bytes | struct rec {
Y x4 int ar[4]; int af[4];
&8 long d; long 1i;
}; g5 struct rec@ next;

Size= 5L bytes—> | };

+» Almost always define structs in global scope near the
top of your C file

= Struct definitions follow normal rules of scope

14

W UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Autumn 2018

Accessing Structure Members

+ @Given a struct instance, access

member using the . operator: |struct rec |
int a[4];

struct rec rl;

. long 1i;
rl.1 = val; struct rec *next;
. . I
« @Glven a pointer to a struct:
struct rec *r;
r = &rl; // or malloc space for r to point to
. O dereference. (get nstance)
We have two options: :
adcess ‘F‘ew‘
- Use * and . operators: (*r)Vi = val;
. é\eq\»\vo\le«*
- Use —> operator for short: r->i = val;<—

+» In assembly: register holds address of the first byte
= Access members with offsets D(Rb,Ri, S

—J :

L14: Structs & Alignment CSE351, Autumn 2018

W UNIVERSITY of WASHINGTON

. class Record { ... }
java Slde-nOte Record x = new Record();

+» An instance of a class is like a pointer to a struct

containing the fields
" (Ignoring methods and subclassing for now)
" SolJava’s x.f islikeCs x=>f or (*x).f

% In Java, almost everything is a pointer (“reference”) to

an object
" Cannot declare variables or fields that are structs or arrays

= Always a pointer to a struct or array
= So every Java variable or field is < 8 bytes (but can point to
lots of data)

16

W UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Autumn 2018

Structure Representation
stud delindion

[Etruct rec { T
int al4];
long 1;
struct rec *next; a 1 next
\ 1/ *x;
0 16 24 32

A\
C dedare a po'\vx+ef‘

+» Characteristics
" Contiguously-allocated region of memory
= Refer to members within structure by names
®" Members may be of different types

17

W UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Autumn 2018

Structure Representation

struct rec { T

C\) int a[4]; SYruch rec

® 1ong i; '/_/k N
® struct rec *next; a(ﬂla\ml a{ﬂ[a[&] 1 next
) 0 16 24 32

% Structure represented as block of memory
= Big enough to hold all of the fields

ﬂ.%/Fields ordered according to declaration order

= Even if another ordering would be more compact

+» Compiler determines overall size + positions of fields

" Machine-level program has no understanding of the
structures in the source code

18

W UNIVERSITY of WASHINGTON L14: Structs & Alignment

CSE351, Autumn 2018

Accessing a Structure Member

struct rec {

int al4];

long 1i;

struct rec *next;
b o*r;

+» Compiler knows the
offset of each member
within a struct

" Compute as
*(r+offset)
- Referring to absolute

offset, so no pointer
arithmetic

r (sdd¢)

r—->1

(::) next

r+16 24 32

{

}

long get

return

?}kstruct rec *r)
r—->1;

r inw%rdi, index in $rsi

movq
ret

16 (%rd1), %rax

19

W UNIVERSITY of WASHINGTON L14: Structs & Alignment

CSE351, Autumn 2018

Exercise: Pointer to Structure Member

\“ P(;u,\“ er "j

-

struct rec { T
int af4];
long 1; M
struct rec *next; a 1 next
bo*r;
0 16 24 32

long* addr of i (struct rec *r)

{

return & (r->1);

} N

r 1n $rdi

\eaq \é(%VAO,%rax

C
ret

N\
wanl address

struct rec*¥ addr of next (struct rec *r)
{

return & (r->next) ;

}

r 1n $rdi

|Qaq 24 (7“()‘0 , srax
\

ret

20

L14: Structs & Alignment

CSE351, Autumn 2018

W UNIVERSITY of WASHINGTON

Generating Pointer to Array Element

struct rec {

int al4];

long 1i;

struct rec *next;
Sy

+» @Generating Pointer to
Array Element

= Offset of each structure
member determined at
compile time

" Compute as:
r+4*index

r r+4*index
a 1 next
0 16 24 32

int* find addr of array elem
(struct rec *r, long index)

{

return &r->a[index];

} N\

A"
&(r->a[index])

r 1n %rdi, index 1n $%rsi
leaq (%rdi,%rsi,4), %Srax

ret

21

W UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Autumn 2018

Review: Memory Alighment in x86-64

+ Aligned means that any primitive object of K bytes
must have an address that is a multiple of K

+ Aligned addresses for data types:

1 char No restrictions
short Lowest bit must be zero: ...0, | ()
. i €
4 1int, float Lowest 2 bits zero: ...00, :::S%ﬁg;c 5

long, double, * Lowest 3 bitszero: ...000,
16 long double Lowest 4 bits zero: ...0000,

“W‘\&Hip‘ﬁ of ' mens ho remainder Whea Vox fijde \o\/,
Since K XS N poWe O’F Z) &\iu‘\&‘u\j ‘b\/ < s €‘(V'\\/A\€K\’ Y > QG%ZQ(>.

Mo remainder mean) o wt'\y\'r is " lost” during the st — &) geros in lowest %5{20() bits .

22

W UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Autumn 2018

Alignment Principles

+ Aligned Data
" Primitive data type requires K bytes
= Address must be multiple of K
= Required on some machines; advised on x86-64

+» Motivation for Aligning Data

" Memory accessed by (aligned) chunks of bytes
(width is system dependent)
- Inefficient to load or store value that spans quad word boundaries
 Virtual memory trickier when value spans 2 pages (more on this later)

*" Though x86-64 hardware will work regardless of alignment of
data

23

W UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Autumn 2018

Structures & Alignment

oo I struct S1 { _E_
» Unaligned Data Ochar c; <1
cl 1[0] i[1] \ @ int i[2];¢4—Y
P [PFI] p+5 p+9 p+17 3 fo?ble vic—%
Klf\b"’ 5reo,+ } bs /Y
+ Aligned Data M B A
" Primitive data type requires K bytes
= Address must be multiple of K
c i[0] i[1] v
p+0 p‘+4\ p+8 prix p+16 p+24
Multiple of\4 Multiple of 8

Multiple of 8 internal fragmentation Multiple of 8 y

W UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Autumn 2018

Satisfying Alignment with Structures (1)

+ Within structure: struct s1 { | X
_ . _ char c; 1
" Must satisfy each element’s alignment requirement int i[2]: | 4
+ Overall structure placement double v; | 3
b *p;
o Each structure has alignment requirement K.« P
kymx‘g

* [Kmax| maxi Largest alignment of any element
- Counts array elements individually as elements

+~ Example:
" Kmax =8, dueto double element

C 1[0] 1[1] \Y,
p+0 o4 p+8 p+16 p+24

a {k A

Multiple of~{ Multiple of 8
Multiple of 8 internal fragmentation

»

25

W UNIVERSITY of WASHINGTON

L14: Structs & Alignment

CSE351, Autumn 2018

Satisfying Alignment with Structures (2)

« Can find offset of individual fields
using offsetof ()

" Needto #include <stddef.h>

" Example: offsetof (struct S2, c) returns 16

+ For largest alighment requirement K,,,«,

overall structure size must be multiple of K4«

= Compiler will add padding at end of
structure to meet overall structure

struct S2 {

double v;&
int 1[(2];
char c; N
*p;

nd amult of 8 X
alignment requirement P”?(pod .
\Y, 1[0] 1[1] C
p+0 p+8 p+16 pt24
) matt of 4 v matt of L V7 %
Multiple of 8 external fragmentation Multiple of 8

26

CSE351, Autumn 2018

L14: Structs & Alignment

W UNIVERSITY of WASHINGTON

Arrays of Structures

. . struct S2 {
» Overall structure length multiple of K,,, ;. ontatln

+ Satisfy alignment requirement e 3 [2)

char c;

for every element in array } ar10];

o) Pzl a7 N7 R

I
@\ @ a+72

a\liéneo\ add\re ssef

\Y4 1[0] 1[1] C

a+24 a+32 a+4oﬁ1; a+48
| \Y/

Mqiﬁ# This Lioul & \0<\0(~A,
external fragmentation .

W UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Autumn 2018

Alignment of Structs

+» Compiler will do the following:
" Maintains declared ordering of fields in struct

= Each field must be aligned within the struct
(may insert padding)
- offsetof can be used to get actual field offset

" QOverall struct must be aligned according to largest field

= Total struct size must be multiple of its alignment
(may insert padding)
- sizeof should be used to get true size of structs

28

W UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Autumn 2018

How the Programmer Can Save Space

+» Compiler must respect order elements are declared in

= Sometimes the programmer can save space by declaring
large data types first

struct S4 { struct S5 {
char c; int 1i;
int i; ‘ char c;
char d; char d;

B oF B oF

T T~ same ddg,

- a d 1 ol g AN bud more
e’(;(?c?eﬁ‘\‘,l

29

W UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Autumn 2018

. . Vote on sizeof(struct old):
Peer Instruction Question . o i com/iustinh

J/

» Minimize the size of the struct by re-ordering the vars

struct old { struct new {
int i; int i;

short s[3];

’

float f; ;
5o 5

«» What are the old and new sizes of the struct?

sizeof(structold) = sizeof(struct new) =
A.
B. 22bytes
C. 28 bytes
D. 32bytes
E. We'relost...

30

W UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Autumn 2018

Summary

« Arraysin C
= Aligned to satisfy every element’s alignment requirement

< Structures

= Allocate bytes in order declared
®= Pad in middle and at end to satisfy alignment

31

