W UNIVERSITY of WASHINGTON

LO7: Floating Point Il, x86-64 Intro

Floating Point Il, x86-64 Intro

CSE 351 Autumn 2018

Instructor: Teaching Assistants:

Justin Hsia Akshat Aggarwal An Wang
Brian Dai Britt Henderson
Kevin Bi Kory Watson
Sophie Tian Teagan Horkan

CSE351, Autumn 2018

Andrew Hu
James Shin
Riley Germundson

0.95 (AcTuALY

NUMBERS GOLDEN RAT() OBSERVED)
(DONOTUSE) |JAIT COME BRCk,

T HAVE FRLTS!

NUMBER INDICATING IFYOU ENCOUNTER
0.0000000372 FRBIODEN GIRD-AKEFTED AS AFACTOID 15 MADELP A NUMBER HIGHER
LESSTHAN 1) REGION CANON BY ORHODOX. ("mEry 7 vemrs... ‘suee THAN THIS, YOURE
1 e 1 MATHEMATICGIANS __ __ -~ SA'STHERE NOT DOINGREALMATH
J / \PRE 7. E%)
: — P ! t H - H—! UNEXPLORED |— : |, :
14 o0 1]2 ‘3 TN ;7 8 10
e— S ——— r
NEGATVE ¢h-paRTHENON 2.9299372 BAHETL[J}EF LARCEST
"IH]TﬂTGR“ SINFLOWERS (E AND Trl OF Y.[0R EVEN FRI'ME.

http://xkcd.com/899/

W UNIVERSITY of WASHINGTON LO7: Floating Point II, x86-64 Intro CSE351, Autumn 2018

Administrivia

+» Lab 1b due Friday (10/12)
" Submitbits.cand lablBreflect.txt

+» Homework 2 due next Friday (10/19)
" On Integers, Floating Point, and x86-64

+ Section tomorrow on Integers and Floating Point

W UNIVERSITY of WASHINGTON LO7: Floating Point II, x86-64 Intro CSE351, Autumn 2018

This is extra

Denorm Numbers (non-testable)

material

+» Denormalized numbers (E = 0x00)
" Noleading 1
= Uses implicit exponent of —126

+» Denormalized numbers close the gap between zero

and the smallest normalized number
So much

126 — 4 9-126
two*2 2 — closerto0
= Smallest denorm: + 0.0...01,, x2126 = + 2-149

- There is still a gap between zero and the smallest denormalized
number

= Smallest norm: + 1.0...0

two

W UNIVERSITY of WASHINGTON LO7: Floating Point II, x86-64 Intro CSE351, Autumn 2018

Other Special Cases

» E=0xXFF, M =0: oo
- m e.g.division by O

\ " Still work in comparisons!

» E=OxFF, M #0: Not a Number (NaN)
" e.g. square root of negative number, 0/0, co—oo
" NaN propagates through computations
= Value of M can be useful in debugging (1el Von Couse of NaN)

+» New largest value (besides o0)?

= E = (0OxFF has now been taken!
23 ones

" E =0xFE has largest: 1.71...1,x2127 = 2128 - 2104

) 2
G 2BH c L —)

W UNIVERSITY of WASHINGTON

LO7: Floating Point Il, x86-64 Intro

Floating Point Encoding Summary

CSE351, Autumn 2018

Meaning
gmallest E 0x00 0 t0
G 0%) O0x00 non-zero + denorm num
cv:r\s/t‘ h){ 0x01 — OXFE anything + norm num
o E J OXFF 0 t oo
Ca\\ 1:) OxFF non-zero NaN

W UNIVERSITY of WASHINGTON LO7: Floating Point II, x86-64 Intro CSE351, Autumn 2018

Floating point topics

+ Fractional binary numbers

+ |EEE floating-point standard

+ Floating-point operations and rounding
+ Floating-point in C

%~ There are many more details that we won’t cover
" |t's a 58-page standard...

W UNIVERSITY of WASHINGTON LO7: Floating Point Il, x86-64 Intro CSE351, Autumn 2018

Tiny Floating Point Representation

+» We will use the following 8-bit floating point
representation to illustrate some key points:

S E M

1 4 3
+» Assume that it has the same properties as |EEE

floating point:

" bias= 2"'-1=2"-1= 7

= encodingof —0= O} 1 O(m 00 =0x 30

" encoding of +co =L O 11%/1 000 =0 F8&

= encoding of the largest (+) normalized # = 0L 0 111/) 111 =O0xF7
= encoding of the smallest (+) normalized # =k O OOO/l 000=~x 03

7

W UNIVERSITY of WASHINGTON LO7: Floating Point II, x86-64 Intro

CSE351, Autumn 2018

Peer Instruction Question

+» Using our 8-bit representation, what value gets
stored when we try to encode 2.625 = 21 + 2-1 + 2-3?

s| E M T2 (1"2 2

1 A 3 = ’Z 01 Ol_
= \/ote at http://PollEv.com/justinh

S=0
rfA E = Exp+ bias
| =1L+ 7 =4
B. +2.625 = Opb 1000
C. +2.75 M=0b 0610/
D. + 3-25 'c— Con bf\\\, .s"bre
3 la’n*s.’

E. We're lost...

Shred as [Ob O_L00D 010 = 1.5

W UNIVERSITY of WASHINGTON LO7: Floating Point II, x86-64 Intro

CSE351, Autumn 2018

Peer Instruction Question

+ Using our 8-bit representation, what value gets
stored when we try to encode 384 = 28+ 27?=2°(1+2")

- 3
s| E M = 1x L,
1 4 3 S=0
= \/ote at http://PollEv.com/justinh E= E;P thige
= g+ 7=15
A = oedlad
T
B. +384 this falls subside oFthe /
rc o / nomalizel exponeAl runge .
D. NaN thig humber s Tho |0»r3<, suwe 6"\“'&
I A4 A
E. We're lost... | oo ¢ OLo 1114 ooﬂ

ingt eGo\

W UNIVERSITY of WASHINGTON LO7: Floating Point II, x86-64 Intro CSE351, Autumn 2018

Distribution of Values

+» What ranges are NOT representable?
= Between largest norm and infinity Overflow (Exp too large)
= Between zero and smallest denorm Underflow (Exp too small)
= Between norm numbers? Rounding

+» Given a FP number, what’s the bit pattern of the next
| 5 M=050..00,then 25¢x1.0
largest representable number? i m-oLo. on, fhen 8y (122)
= What is this “step” when Exp =0? 7272 o = 9P
= What is this “step” when Exp = 100? 2%

« Distribution of values is denser toward zero

overflou underFlow round in over< low
‘ g A A A—A—A—A—A—ﬂiw(ﬂﬂ—A—A—A—Ak—)—’Qj—A—A[
15 10 5 0 5 o 15

¢ Denormalized A Normalized Infinity

10

W UNIVERSITY of WASHINGTON LO7: Floating Point II, x86-64 Intro CSE351, Autumn 2018

. . . This is extra
Floating Point Rounding (non-testable)

material

+» The |[EEE 754 standard actually specifies different
rounding modes:
<% Round to nearest, ties to nearest even digit
= Round toward +oo (round up)
= Round toward —oo (round down)
= Round toward O (truncation)

+ In our tiny exampleh:w S E M
L~ A
= Man = 1.001/01rounded to M = 0b001 1 4 3

> ol
" Man = 1.001/11%un<gfg to M = 0b010
— == |
* Man = 1.001/10 rounded to M = 0b01

even d\l()\+
Man = 1.000/10 ronded o M =0b 000

11

W UNIVERSITY of WASHINGTON LO7: Floating Point II, x86-64 Intro CSE351, Autumn 2018

Floating Point Operations: Basic Idea

xMantissax2Exponent

E M 5

Round (x + V)

“ X T ¥y

X Fo Yy Round (x * vy)
+ Basic idea for floating point operations:
" First, compute the exact result

" Then round the result to make it fit into the specificed
precision (width of M)

- Possibly over/underflow if exponent outside of range

12

W UNIVERSITY of WASHINGTON LO7: Floating Point Il, x86-64 Intro CSE351, Autumn 2018

Mathematical Properties of FP Operations

+» Overflow yields 400 and underflow yields 0

+ Floats with value +c0 and NaN can be used in
operations
= Result usually still £00 or NaN, but not always intuitive

+ Floating point operations do not work like real math,

due to rounding 15 5
" Not associative: (3.14+1e100)-1e100 != 3.14+(1el00-1e100)
0 3.14
= Not distributive: 100*(0.1+0.2) !'= 100*0.1+100%0.2
30.000000000000003553 30

"= Not cumulative
- Repeatedly adding a very small number to a large one may do nothing

13

W UNIVERSITY of WASHINGTON LO7: Floating Point II, x86-64 Intro CSE351, Autumn 2018

Floating point topics

» Fractional binary numbers

+ |EEE floating-point standard

+ Floating-point operations and rounding
+ Floating-point in C

%~ There are many more details that we won’t cover
" |t's a 58-page standard...

14

W UNIVERSITY of WASHINGTON LO7: Floating Point II, x86-64 Intro CSE351, Autumn 2018

Floating Point in C ! ! !
+» Two common levels of precision:

float 1.0f single precision (32-bit)

double 1.0 double precision (64-bit)

» #include <math.h> toget INFINITY and NAN
constants <Flosct. k> Hv apdthonal conctants

+» Equality (==) comparisons between floating point
numbers are tricky, and often return unexpected
results, so just avoid them!
nffead use G\\oSQY—l "—FQ_) 4 7—’10

t some Grbiirary threshold .

W UNIVERSITY of WASHINGTON LO7: Floating Point II, x86-64 Intro CSE351, Autumn 2018

Floating Point Conversions in C 111

+» Casting between int, float, and double changes
the bit representation

" Int - float
- May be rounded (not enough bits in mantissa: 23)
- Overflow impossible

" 1ntorfloat — double
- Exact conversion (all 32-bit 1nts representable)

" long — double

- Depends on word size (32-bit is exact, 64-bit may be rounded)

" doubleorfloat — 1int

- Truncates fractional part (rounded toward zero)

- “Not defined” when out of range or NaN: generally sets to Tmin

(even if the value is a very big positive)
16

W UNIVERSITY of WASHINGTON LO7: Floating Point II, x86-64 Intro CSE351, Autumn 2018

Peer Instruction Question

+ We execute the following code in C. How many bytes
are the same (value and position) between i and £?

" No voting.
TTF LY oy L o
int i = 384; // 2°8 + 2°7|=0b If 000606
float £ = (float) 1; _ 1_12,(28
. $=0
|A.] F=g+127 =135
B. 1byte = 0LL000 0111
C. 2 bytes M=ob10..0
D. 3 bytes | Ok 0 100 0114 top/0
’ 1 shred a5 Ox OO 00 01 80O
E. We'relost... £ 4, as Ox 43 CO 00 OO

17

LO7: Floating Point Il, x86-64 Intro

CSE351, Autumn 2018

W UNIVERSITY of WASHINGTON

Floating Point and the Programmer

1_0x2°—%>5=Q,E=0H\\HI,“: 0..0
#include < > 1= ob O/Ol\ N /ooo ood 00) oo 000 = Ox3F32000du
int main(int arge, char* argvl]) { ixéégbgggo 0x3£800001 |
1ont Do T gl spesity Tot condust £1 = 1.000000000
}) 7 £f2 = 1.000000119
int 1;
for (1 = 0; 1 < 10; i++) .
£2 4= 1.0/10.0; f1 == £3? yes
£7 shoald == 10x5=|
printf ("0x%08x %08x\n", *(int*)&fl, *(int*) &£f2);
printf (" $10.9f\n", f£f1);
printf (" $10.9f\n\n", £2);
Llod-¢
£f1 = 1E30; | sec
£2 = 1E-30;|0°°
float £3 = £f1 + £2;
printf (" $s\n", fl == £3 ? "yes" : "no");
lO—so:: Io'so_l_ lD-‘So
return 0O;
}

18

W UNIVERSITY of WASHINGTON LO7: Floating Point Il, x86-64 Intro CSE351, Autumn 2018

Floating Point Summary

+ Floats also suffer from the fixed number of bits
available to represent them
= Can get overflow/underflow

= “Gaps” produced in representable numbers means we can
lose precision, unlike ints
- Some “simple fractions” have no exact representation (e.g. 0.2)
- “Every operation gets a slightly wrong result”

+ Floating point arithmetic not associative or

distributive

= Mathematically equivalent ways of writing an expression
may compute different results

+» Never test floating point values for equality!
+» Careful when converting between intsand floats!

19

W UNIVERSITY of WASHINGTON LO7: Floating Point Il, x86-64 Intro CSE351, Autumn 2018

Number Representation Really Matters

@,
0‘0

1991: Patriot missile targeting error
= clock skew due to conversion from integer to floating point

1996: Ariane 5 rocket exploded (S1 billion)

= overflow converting 64-bit floating point to 16-bit integer

2000: Y2K problem

" |imited (decimal) representation: overflow, wrap-around

L)

*

@,
0‘0

L)

*

2038: Unix epoch rollover

" Unix epoch =seconds since 12am, January 1, 1970

" signed 32-bit integer representation rolls over to TMin in 2038

Other related bugs:

= 1982: Vancouver Stock Exchange 10% error in less than 2 years

= 1994: Intel Pentium FDIV (floating point division) HW bug (S475 million)
= 1997: USS Yorktown “smart” warship stranded: divide by zero

= 1998: Mars Climate Orbiter crashed: unit mismatch (5193 million)

D)

%

20

W UNIVERSITY of WASHINGTON

Roadmap
C:

LO7: Floating Point Il, x86-64 Intro

Java:

car *c = malloc(sizeof (car));
c->miles = 100;

c->gals = 17;

float mpg = get mpg(c);

Car ¢ = new Car();
c.setMiles (100) ;
c.setGals(17);
float mpg =

CSE351, Autumn 2018

Memory & data
Integers & floats
x86 assembly
Procedures & stacks
Executables

free (c); c.getMPG () ; Arrays & structs
— - —_— Memory & caches
Assembly get_mpg: Processes
. pushg Srbp)
language: movq 4rsp, rbp Virtual memory
.. Memory allocation
popq srbp Javavs. C
ret ¢‘
Machine 0111010000011000
ode: 100011010000010000000010
code. 1000100111000010
110000011111101000011111
Computer

system:

21

W UNIVERSITY of WASHINGTON LO7: Floating Point Il, x86-64 Intro CSE351, Autumn 2018

Architecture Sits at the Hardware Interface

Source code Compiler Architecture Hardware
Different applications Perform optimizations, Instruction set Ditferent
or algorithms generate instructions implementations
fmmmmm oo N Intel Pentium 4
. C Language :
1. . I ‘ .
| . we Wil be Wing ~ Intel Core 2
' | Program A Semmm oo }
| A |
| GCC | x36-64 . Intel Core i7
| T— |
I ——————————)
| T)
| 1
l B
| AMD Athlon
i Clang
|
: Your ‘ ; ‘ o —,e .
' | program ! ! '
| P9 : ARMV8 | ARM Cortex-A53
G , | (AArch64/A64) |
e e b
Apple A7

22

W UNIVERSITY of WASHINGTON LO7: Floating Point II, x86-64 Intro CSE351, Autumn 2018

Definitions

+ Architecture (ISA): The parts of a processor design
that one needs to understand to write assembly code

= “What is directly visible to software”

+» Microarchitecture: Implementation of the
architecture

= CSE/EE 469

23

W UNIVERSITY of WASHINGTON

LO7: Floating Point Il, x86-64 Intro

Instruction Set Architectures

« The ISA defines:

" The system’s state (e.g. registers, memory, program

counter)

" The instructions the CPU can execute

CSE351, Autumn 2018

" The effect that each of these instructions will have on the

system state

CPU

PC

Registers

Memory

24

W UNIVERSITY of WASHINGTON LO7: Floating Point Il, x86-64 Intro CSE351, Autumn 2018

Instruction Set Philosophies

+» Complex Instruction Set Computing (CISC): Add more

and more elaborate and specialized instructions as
needed

= |ots of tools for programmers to use, but hardware must be
able to handle all instructions

= x86-64 is CISC, but only a small subset of instructions
encountered with Linux programs

Reduced Instruction Set Computing (RISC): Keep

instruction set small and regular

= Easier to build fast hardware

= |et software do the complicated operations by composing
simpler ones

25

W UNIVERSITY of WASHINGTON LO7: Floating Point II, x86-64 Intro

General ISA Design Decisions

< Instructions

" What instructions are available? What do they do?
"= How are they encoded?

+» Registers
" How many registers are there?
" How wide are they?

< Memory

" How do you specify a memory location?

CSE351, Autumn 2018

26

W UNIVERSITY of WASHINGTON

LO7: Floating Point Il, x86-64 Intro

CSE351, Autumn 2018

Mainstream ISAs

Designer
Bits

Introduced

Design

Type
Encoding

®

intel

x86

Intel, AMD
16-bit, 32-bit and 64-bit

1978 (16-bit), 1985 (32-bit), 2003
(64-bit)

cisC
Register-memory

Variable (1 to 15 bytes)

Endianness Little

Macbooks & PCs
(Core i3, i5, i7, M)
X86-64 Instruction Set

ARM

ARM architectures

Designer ARM Holdings
Bits 32-bit, 64-bit
Introduced 1985; 31 years ago
Design RISC

Type Register-Register

Encoding AArch64/A64 and AArch32/A32
use 32-bit instructions, T32
(Thumb-2) uses mixed 16- and
32-bit instructions. ARMv7 user-
space compatibilitym

Endianness Bi (little as default)

Smartphone-like devices
(iPhone, iPad, Raspberry Pi)
ARM Instruction Set

MIIFPS

MIPS
Designer MIPS Technologies, Inc.
Bits 64-bit (32—64)
Introduced 1981; 35 years ago
Design RISC
Type Register-Register
Encoding Fixed
Endianness Bi

Digital home & networking
equipment

(Blu-ray, PlayStation 2)
MIPS Instruction Set

27

W UNIVERSITY of WASHINGTON LO7: Floating Point II, x86-64 Intro CSE351, Autumn 2018

Summary

+ Floating point encoding has many limitations
= QOverflow, underflow, rounding

®= Rounding is a HUGE issue due to limited mantissa bits and
gaps that are scaled by the value of the exponent

" Floating point arithmetic is NOT associative or distributive

+» Converting between integral and floating point data
types does change the bits

% X86-64 is a complex instruction set computing (CISC)
architecture

28

