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Administrivia

+» Lab 1b due Friday (10/12)
" Submitbits.cand lablBreflect.txt

+» Homework 2 due next Friday (10/19)
" On Integers, Floating Point, and x86-64

+ Section tomorrow on Integers and Floating Point



W UNIVERSITY of WASHINGTON LO7: Floating Point II, x86-64 Intro CSE351, Autumn 2018

This is extra

Denorm Numbers (non-testable)

material

+» Denormalized numbers (E = 0x00)
" Noleading 1
= Uses implicit exponent of —126

+» Denormalized numbers close the gap between zero

and the smallest normalized number
So much

126 — 4 9-126
two*2 2 — closerto0
= Smallest denorm: + 0.0...01,, x2126 = + 2-149

- There is still a gap between zero and the smallest denormalized
number

= Smallest norm: + 1.0...0

two
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Other Special Cases

» E=0xXFF, M =0: oo
- m e.g.division by O

\ " Still work in comparisons!

» E=OxFF, M #0: Not a Number (NaN)
" e.g. square root of negative number, 0/0, co—oo
" NaN propagates through computations
= Value of M can be useful in debugging (1el Von  Couse of NaN)

+» New largest value (besides o0)?

= E = (0OxFF has now been taken!
23 ones

" E =0xFE has largest: 1.71...1,x2127 = 2128 - 2104

) 2
G 2BH c L — )
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Floating Point Encoding Summary

CSE351, Autumn 2018

Meaning
gmallest E 0x00 0 t0
G 0%) O0x00 non-zero + denorm num
cv:r\s/t‘ h){ 0x01 — OXFE anything + norm num
o E J OXFF 0 t oo
Ca\\ 1:) OxFF non-zero NaN
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Floating point topics

+ Fractional binary numbers

+ |EEE floating-point standard

+ Floating-point operations and rounding
+ Floating-point in C

%~ There are many more details that we won’t cover
" |t's a 58-page standard...
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Tiny Floating Point Representation

+» We will use the following 8-bit floating point
representation to illustrate some key points:

S E M

1 4 3
+» Assume that it has the same properties as |EEE

floating point:

" bias= 2"'-1=2"-1= 7

= encodingof —0= O} 1 O(m 00 =0x 30

" encoding of +co =L O 11%/1 000 =0 F8&

= encoding of the largest (+) normalized # = 0L 0 111/) 111 =O0xF7
= encoding of the smallest (+) normalized # =k O OOO/l 000=~x 03

7
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Peer Instruction Question

+» Using our 8-bit representation, what value gets
stored when we try to encode 2.625 = 21 + 2-1 + 2-3?

s| E M T2 (1"2 2

1 A 3 = ’Z 01 Ol_
= \/ote at http://PollEv.com/justinh

S=0
rfA E = Exp+ bias
| =1L+ 7 =4
B. +2.625 = Opb 1000
C. +2.75 M=0b 0610/
D. + 3-25 'c— Con bf\\\, .s"bre
3 la’n*s.’

E. We're lost...

Shred as [ Ob O_L00D 010 = 1.5
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Peer Instruction Question

+ Using our 8-bit representation, what value gets
stored when we try to encode 384 = 28+ 27?=2°(1+2")

- 3
s| E M = 1x L,
1 4 3 S=0
= \/ote at http://PollEv.com/justinh E= E;P thige
= g+ 7=15
A = oedlad
T
B. +384 this falls subside oFthe /
rc o / nomalizel exponeAl runge .
D. NaN thig humber s Tho |0»r3<, suwe 6"\“'&
I A4 A
E. We're lost... | oo ¢ OLo 1114 ooﬂ

ingt eGo\
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Distribution of Values

+» What ranges are NOT representable?
= Between largest norm and infinity Overflow (Exp too large)
= Between zero and smallest denorm Underflow (Exp too small)
= Between norm numbers? Rounding

+» Given a FP number, what’s the bit pattern of the next
| 5 M=050..00,then 25¢x1.0
largest representable number? i m-oLo. on, fhen 8y (122)
= What is this “step” when Exp =0? 7272 o = 9P
= What is this “step” when Exp = 100? 2%

« Distribution of values is denser toward zero

overflou underFlow round in over< low
‘ g A A A—A—A—A—A—ﬂiw(ﬂﬂ—A—A—A—Ak—)—’Qj—A—A[
15 10 5 0 5 o 15

¢ Denormalized A Normalized Infinity

10
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. . . This is extra
Floating Point Rounding (non-testable)

material

+» The |[EEE 754 standard actually specifies different
rounding modes:
<% Round to nearest, ties to nearest even digit
= Round toward +oo (round up)
= Round toward —oo (round down)
= Round toward O (truncation)

+ In our tiny exampleh:w S E M
L~ A
= Man = 1.001/01rounded to M = 0b001 1 4 3

> ol
" Man = 1.001/11%un<gfg to M = 0b010
— == |
* Man = 1.001/10 rounded to M = 0b01

even d\l()\+
Man = 1.000/10 ronded o M =0b 000

11
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Floating Point Operations: Basic Idea

xMantissax2Exponent

E M 5

Round (x + V)

“ X T ¥y

X Fo Yy Round (x * vy)
+ Basic idea for floating point operations:
" First, compute the exact result

" Then round the result to make it fit into the specificed
precision (width of M)

- Possibly over/underflow if exponent outside of range

12
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Mathematical Properties of FP Operations

+» Overflow yields 400 and underflow yields 0

+ Floats with value +c0 and NaN can be used in
operations
= Result usually still £00 or NaN, but not always intuitive

+ Floating point operations do not work like real math,

due to rounding 15 5
" Not associative: (3.14+1e100)-1e100 != 3.14+(1el00-1e100)
0 3.14
= Not distributive: 100*(0.1+0.2) !'= 100*0.1+100%0.2
30.000000000000003553 30

"= Not cumulative
- Repeatedly adding a very small number to a large one may do nothing

13
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Floating point topics

» Fractional binary numbers

+ |EEE floating-point standard

+ Floating-point operations and rounding
+ Floating-point in C

%~ There are many more details that we won’t cover
" |t's a 58-page standard...

14
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Floating Point in C ! ! !
+» Two common levels of precision:

float 1.0f single precision (32-bit)

double 1.0 double precision (64-bit)

» #include <math.h> toget INFINITY and NAN
constants  <Flosct. k> Hv apdthonal conctants

+» Equality (==) comparisons between floating point
numbers are tricky, and often return unexpected
results, so just avoid them!
nffead use G\\oSQY—l "—FQ_) 4 7—’10

t some Grbiirary threshold .
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Floating Point Conversions in C 111

+» Casting between int, float, and double changes
the bit representation

" Int - float
- May be rounded (not enough bits in mantissa: 23)
- Overflow impossible

" 1ntorfloat — double
- Exact conversion (all 32-bit 1nts representable)

" long — double

- Depends on word size (32-bit is exact, 64-bit may be rounded)

" doubleorfloat — 1int

- Truncates fractional part (rounded toward zero)

- “Not defined” when out of range or NaN: generally sets to Tmin

(even if the value is a very big positive)
16
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Peer Instruction Question

+ We execute the following code in C. How many bytes
are the same (value and position) between i and £?

" No voting.
TTF LY oy L o
int i = 384; // 2°8 + 2°7|=0b If 000606
float £ = (float) 1; _ 1_12,(28
. $=0
|A. ] F=g+127 =135
B. 1byte = 0LL000 0111
C. 2 bytes M=ob10..0
D. 3 bytes | Ok 0 100 0114 top/0
’ 1 shred a5 Ox OO 00 01 80O
E. We'relost... £ 4, as Ox 43 CO 00 OO

17
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Floating Point and the Programmer

1_0x2°—%>5=Q,E=0H\\HI,“: 0..0
#include < > 1= ob O/Ol\ N /ooo ood 00 ) oo 000 = Ox3F32000du
int main(int arge, char* argvl]) { ixéégbgggo 0x3£800001 |
1ont Do T gl spesity Tot condust £1 = 1.000000000
} ) 7 £f2 = 1.000000119
int 1;
for (1 = 0; 1 < 10; i++) .
£2 4= 1.0/10.0; f1 == £3? yes
£7 shoald == 10x5=|
printf ("0x%08x %08x\n", *(int*)&fl, *(int*) &£f2);
printf (" $10.9f\n", f£f1);
printf (" $10.9f\n\n", £2);
Llod-¢
£f1 = 1E30; | sec
£2 = 1E-30;|0°°
float £3 = £f1 + £2;
printf (" $s\n", fl == £3 ? "yes" : "no" );
lO—so:: Io'so_l_ lD-‘So
return 0O;
}

18
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Floating Point Summary

+ Floats also suffer from the fixed number of bits
available to represent them
= Can get overflow/underflow

= “Gaps” produced in representable numbers means we can
lose precision, unlike ints
- Some “simple fractions” have no exact representation (e.g. 0.2)
- “Every operation gets a slightly wrong result”

+ Floating point arithmetic not associative or

distributive

= Mathematically equivalent ways of writing an expression
may compute different results

+» Never test floating point values for equality!
+» Careful when converting between intsand floats!

19
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Number Representation Really Matters

@,
0‘0

1991: Patriot missile targeting error
= clock skew due to conversion from integer to floating point

1996: Ariane 5 rocket exploded (S1 billion)

= overflow converting 64-bit floating point to 16-bit integer

2000: Y2K problem

" |imited (decimal) representation: overflow, wrap-around

L)

*

@,
0‘0

L)

*

2038: Unix epoch rollover

" Unix epoch =seconds since 12am, January 1, 1970

" signed 32-bit integer representation rolls over to TMin in 2038

Other related bugs:

= 1982: Vancouver Stock Exchange 10% error in less than 2 years

= 1994: Intel Pentium FDIV (floating point division) HW bug (S475 million)
= 1997: USS Yorktown “smart” warship stranded: divide by zero

= 1998: Mars Climate Orbiter crashed: unit mismatch (5193 million)

D)

%

20
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Roadmap
C:

LO7: Floating Point Il, x86-64 Intro

Java:

car *c = malloc(sizeof (car));
c->miles = 100;

c->gals = 17;

float mpg = get mpg(c);

Car ¢ = new Car();
c.setMiles (100) ;
c.setGals(17);
float mpg =

CSE351, Autumn 2018

Memory & data
Integers & floats
x86 assembly
Procedures & stacks
Executables

free (c); c.getMPG () ; Arrays & structs
— - —_— Memory & caches
Assembly get_mpg: Processes
. pushg Srbp )
language: movq 4rsp, rbp Virtual memory
.. Memory allocation
popq srbp Javavs. C
ret ¢‘
Machine 0111010000011000
ode: 100011010000010000000010
code. 1000100111000010
110000011111101000011111
Computer

system:

21




W UNIVERSITY of WASHINGTON LO7: Floating Point Il, x86-64 Intro CSE351, Autumn 2018

Architecture Sits at the Hardware Interface

Source code Compiler Architecture Hardware
Different applications Perform optimizations, Instruction set Ditferent
or algorithms generate instructions implementations
fmmmmm oo N Intel Pentium 4
. C Language :
1. . I ‘ .
| . we Wil be Wing ~ Intel Core 2
' | Program A Semmm oo }
| A |
| GCC | x36-64 . Intel Core i7
| T— |
I —————————— )
| T )
| 1
l B
| AMD Athlon
i Clang
|
: Your ‘ ; ‘ o —,e .
' | program ! ! '
| P9 :  ARMV8 | ARM Cortex-A53
G , | (AArch64/A64) |
e e b
Apple A7

22
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Definitions

+ Architecture (ISA): The parts of a processor design
that one needs to understand to write assembly code

= “What is directly visible to software”

+» Microarchitecture: Implementation of the
architecture

= CSE/EE 469

23
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Instruction Set Architectures

« The ISA defines:

" The system’s state (e.g. registers, memory, program

counter)

" The instructions the CPU can execute

CSE351, Autumn 2018

" The effect that each of these instructions will have on the

system state

CPU

PC

Registers

Memory

24
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Instruction Set Philosophies

+» Complex Instruction Set Computing (CISC): Add more

and more elaborate and specialized instructions as
needed

= |ots of tools for programmers to use, but hardware must be
able to handle all instructions

= x86-64 is CISC, but only a small subset of instructions
encountered with Linux programs

Reduced Instruction Set Computing (RISC): Keep

instruction set small and regular

= Easier to build fast hardware

= |et software do the complicated operations by composing
simpler ones

25
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General ISA Design Decisions

< Instructions

" What instructions are available? What do they do?
"= How are they encoded?

+» Registers
" How many registers are there?
" How wide are they?

< Memory

" How do you specify a memory location?

CSE351, Autumn 2018

26
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Mainstream ISAs

Designer
Bits

Introduced

Design

Type
Encoding

®

intel

x86

Intel, AMD
16-bit, 32-bit and 64-bit

1978 (16-bit), 1985 (32-bit), 2003
(64-bit)

cisC
Register-memory

Variable (1 to 15 bytes)

Endianness Little

Macbooks & PCs
(Core i3, i5, i7, M)
X86-64 Instruction Set

ARM

ARM architectures

Designer ARM Holdings
Bits 32-bit, 64-bit
Introduced 1985; 31 years ago
Design RISC

Type Register-Register

Encoding AArch64/A64 and AArch32/A32
use 32-bit instructions, T32
(Thumb-2) uses mixed 16- and
32-bit instructions. ARMv7 user-
space compatibilitym

Endianness Bi (little as default)

Smartphone-like devices
(iPhone, iPad, Raspberry Pi)
ARM Instruction Set

MIIFPS

MIPS
Designer MIPS Technologies, Inc.
Bits 64-bit (32—64)
Introduced 1981; 35 years ago
Design RISC
Type Register-Register
Encoding Fixed
Endianness Bi

Digital home & networking
equipment

(Blu-ray, PlayStation 2)
MIPS Instruction Set

27
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Summary

+ Floating point encoding has many limitations
= QOverflow, underflow, rounding

®= Rounding is a HUGE issue due to limited mantissa bits and
gaps that are scaled by the value of the exponent

" Floating point arithmetic is NOT associative or distributive

+» Converting between integral and floating point data
types does change the bits

% X86-64 is a complex instruction set computing (CISC)
architecture

28



