Floating Point I

CSE 351 Autumn 2018

Teaching Assistants: Instructor:

Justin Hsia Akshat Aggarwal

Brian Dai

Kevin Bi

Sophie Tian

An Wang

Britt Henderson

Kory Watson

Teagan Horkan

Andrew Hu

James Shin

Riley Germundson

http://xkcd.com/571/

Administrivia

- Lab 1a due tonight at 11:59 pm
 - Submit pointer.c and lab1Areflect.txt
- Lab 1b due Friday (10/8)
 - Submit bits.c and lab1Breflect.txt
- Homework 2 released today, due 10/19
 - On Integers, Floating Point, and x86-64

CSE351. Autumn 2018

Unsigned Multiplication in C

- Standard Multiplication Function
 - Ignores high order w bits
- Implements Modular Arithmetic
 - UMult_w $(u, v) = u \cdot v \mod 2^w$

Multiplication with shift and add

- ◆ Operation u<<k gives u*2^k
 - Both signed and unsigned

Operands: w bits True Product: w + k bits $u\cdot 2^k$ Discard k bits: w bits $UMult_{w}(u, 2^{k})$ $TMult_{w}(u, 2^{k})$

Examples:

- **u**<<3 == 11 * 8
- u <<5 u <<3 == u * $24 \rightarrow 24 = 32 8$ u <<4 + u <<3■ Most machines shift and add faster than multiply
- - Compiler generates this code automatically

CSE351. Autumn 2018

Number Representation Revisited

- What can we represent in one word?
 - Signed and Unsigned Integers
 - Characters (ASCII)
 - Addresses
- How do we encode the following:
 - Real numbers (e.g. 3.14159)
 - Very large numbers (e.g. 6.02×10²³)
 - Very small numbers (e.g. 6.626×10⁻³⁴)
 - Special numbers (e.g. ∞, NaN)

Floating Point Topics

- Fractional binary numbers
- IEEE floating-point standard
- Floating-point operations and rounding
- Floating-point in C

- There are many more details that we won't cover
 - It's a 58-page standard...

Representation of Fractions

"Binary Point," like decimal point, signifies boundary between integer and fractional parts:

L06: Floating Point I

Example 6-bit representation:

* Example: $10.1010_2 = 1 \times 2^1 + 1 \times 2^{-1} + 1 \times 2^{-3} = 2.625_{10}$

Representation of Fractions

"Binary Point," like decimal point, signifies boundary between integer and fractional parts:

Example 6-bit representation:

- In this 6-bit representation:
 - What is the encoding and value of the smallest (most negative) number?
 - What is the encoding and value of the largest (most positive) number?
 - What is the smallest number greater than 2 that we can represent?

$$00.0000_z = 0$$

11.111 =
$$4-2^{-4}$$

Can't represent canything in-between 10.0001 = $2+2^{-4}$

Scientific Notation (Decimal)

- Normalized form: exactly one digit (non-zero) to left of decimal point
- Alternatives to representing 1/1,000,000,000
 - Normalized:

Not normalized:

$$(1.0\times10^{-9})$$
 (1.0×10^{-9}) (1.0×10^{-10}) (1.0×10^{-10}) (1.0×10^{-10})

Scientific Notation (Binary)

- Computer arithmetic that supports this called floating point due to the "floating" of the binary point
 - Declare such variable in C as float (or double)

Scientific Notation Translation

$$2^{-1} = 0.5$$

 $2^{-2} = 0.25$
 $2^{-3} = 0.125$
 $2^{-4} = 0.0625$

- Convert from scientific notation to binary point
 - Perform the multiplication by shifting the decimal until the exponent disappears
 - Example: $1.011_2 \times 2^4 = 10110_2 = 22_{10}$
 - Example: $1.011_2 \times 2^{-2} = 0.01011_2 = 0.34375_{10}$
- Convert from binary point to normalized scientific notation
 - Distribute out exponents until binary point is to the right of a single digit
 - Example: $1101.001_2 = 1.101001_2 \times 2^3$
- Practice: Convert 11.375₁₀ to binary scientific notation

$$8+2+1+6.2S+0.125$$

 $2^{3}+2^{4}+2^{6}+2^{-2}+2^{-3}=1011.011\times 2^{3}$

Floating Point Topics

- Fractional binary numbers
- IEEE floating-point standard
- Floating-point operations and rounding
- Floating-point in C

- There are many more details that we won't cover
 - It's a 58-page standard...

IEEE Floating Point

- ❖ IEEE 754
 - Established in 1985 as uniform standard for floating point arithmetic
 - Main idea: make numerically sensitive programs portable
 - Specifies two things: representation and result of floating operations
 - Now supported by all major CPUs
- Driven by numerical concerns
 - Scientists/numerical analysts want them to be as real as possible
 - Engineers want them to be easy to implement and fast
 - In the end:
 - Scientists mostly won out
 - Nice standards for rounding, overflow, underflow, but...
 - Hard to make fast in hardware
 - Float operations can be an order of magnitude slower than integer ops

used in computer benchmarks

Floating Point Encoding

- Use normalized, base 2 scientific notation:
 - Value: (±1 × Mantissa × 2 Exponent)
 - Bit Fields: $(-1)^S \times 1.M \times 2^{(E-bias)}$
- * Representation Scheme: (3 separate fields within 32 bits)
 - Sign bit (0 is positive, 1 is negative)
 - Mantissa (a.k.a. significand) is the fractional part of the number in normalized form and encoded in bit vector M
 - Exponent weights the value by a (possibly negative) power of 2 and encoded in the bit vector E

The Exponent Field

E: (unsigned)

-bius p+bias

-127 d 128

255

- Use biased notation
 - Read exponent as unsigned, but with bias of $2^{W-1}-1 = 127$
 - Representable exponents roughly ½ positive and ½ negative
 - Exponent 0 (Exp = 0) is represented as $E = 0b \ 0111 \ 1111 = 2^8 1$
- Why biased?
 - Makes floating point arithmetic easier
 - Makes somewhat compatible with two's complement
- Practice: To encode in biased notation, add the bias then encode in unsigned:

■ Exp = 1
$$\stackrel{+\text{bias}}{\rightarrow}$$
 | 28 $\stackrel{\text{encode}}{\rightarrow}$ E = 0b 1000 0000
■ Exp = 127 $\stackrel{+\text{bias}}{\rightarrow}$ 254 $\stackrel{\text{encode}}{\rightarrow}$ E = 0b 1111 1110 (254 = 255-1 = (2⁵-1)-1)
■ Exp = -63 $\stackrel{+\text{bias}}{\rightarrow}$ 64 $\stackrel{\text{encode}}{\rightarrow}$ E = 0b 0100 0000

The Mantissa (Fraction) Field

- - is read as $1.1_2 = 1.5_{10}$, not $0.1_2 = 0.5_{10}$
 - Gives us an extra bit of precision
- Mantissa "limits"
 - $\Rightarrow 2^{E_{Y}} \times 1.0..0 = 2^{E_{Y}}$
 - Low values near M = 0b0...0 are close to 2^{Exp}
 - High values near M = 0b1...1 are close to 2^{Exp+1}

Peer Instruction Question

- What is the correct value encoded by the following floating point number?

$$\bigoplus_{128-127^{\circ}} 128-127^{\circ}$$
bias Man = 1.110... 0

$$A. + 0.75$$

$$B. + 1.5$$

$$C. + 2.75$$

$$D. + 3.5$$

$$+1.11_{2} \times 2^{1}$$

 $11.1_{2} = 2^{1} + 2^{0} + 2^{-1} = 3.5$

Precision and Accuracy

- Precision is a count of the number of bits in a computer word used to represent a value
 - Capacity for accuracy
- Accuracy is a measure of the difference between the actual value of a number and its computer representation
 - High precision permits high accuracy but doesn't guarantee it. It is possible to have high precision but low accuracy.
 - Example: float pi = 3.14;
 - pi will be represented using all 24 bits of the mantissa (highly precise), but is only an approximation (not accurate)

Need Greater Precision?

Double Precision (vs. Single Precision) in 64 bits

- C variable declared as double
- Exponent bias is now $2^{10}-1 = 1023$, bias = $2^{10}-1$
- Advantages: greater precision (larger mantissa), greater range (larger exponent)
- Disadvantages: more bits used, slower to manipulate

CSE351. Autumn 2018

Representing Very Small Numbers

- * But wait... what happened to zero? $S=0, E=0, M=0 \Rightarrow Exp=-127, Man=10.0...0$
 - Using standard encoding $0x00000000 = 10x2^{-127} \neq 0$
 - Special case: E and M all zeros = 0
 - Two zeros! But at least 0x00000000 = 0 like integers $O_{x}800()0000 = -0$

* New numbers closest to 0:

$$E = 0 \times 01$$
, $E_{xp} = -126$
 $a = 1.0...0_2 \times 2^{-126} = 2^{-126}$

$$b = 1.0...01_2 \times 2^{-126} = 2^{-126} + 2^{-149}$$

- Normalization and implicit 1 are to blame
- Special case: E = 0, M ≠ 0 are denormalized numbers

Denorm Numbers

This is extra (non-testable) material

- Denormalized numbers
 - No leading 1
 - Uses implicit exponent of -126 even though E = 0x00
- Denormalized numbers close the gap between zero and the smallest normalized number
 - Smallest norm: $\pm 1.0...0_{two} \times 2^{-126} = \pm 2^{-126}$

So much closer to 0

- Smallest denorm: $\pm 0.0...01_{two} \times 2^{-126} = \pm 2^{-149}$
 - There is still a gap between zero and the smallest denormalized number

Other Special Cases

- \star E = 0xFF, M = 0: $\pm \infty$
 - *e.g.* division by 0
 - Still work in comparisons!
- \star E = 0xFF, M \neq 0: Not a Number (NaN)
 - e.g. square root of negative number, 0/0, $\infty-\infty$
 - NaN propagates through computations
 - Value of M can be useful in debugging
- New largest value (besides ∞)?
 - E = 0xFF has now been taken!
 - **E** = 0xFE has largest: $1.1...1_2 \times 2^{127} = 2^{128} 2^{104}$

Floating Point Encoding Summary

E	M	Meaning
0x00	0	± 0
0x00	non-zero	± denorm num
0x01 – 0xFE	anything	± norm num
OxFF	0	± 8
OxFF	non-zero	NaN

Summary

Floating point approximates real numbers:

- Handles large numbers, small numbers, special numbers
- Exponent in biased notation (bias = 2^{w-1}-1)
 - Outside of representable exponents is overflow and underflow
- Mantissa approximates fractional portion of binary point
 - Implicit leading 1 (normalized) except in special cases
 - Exceeding length causes rounding

E	M	Meaning	
0x00	0	± 0	
0x00	non-zero	± denorm num	
0x01 – 0xFE	anything	± norm num	
0xFF	0	± ∞	
0xFF	non-zero	NaN	

BONUS SLIDES

An example that applies the IEEE Floating Point concepts to a smaller (8-bit) representation scheme. These slides expand on material covered today, so while you don't need to read these, the information is "fair game."

Tiny Floating Point Example

- 8-bit Floating Point Representation
 - The sign bit is in the most significant bit (MSB)
 - The next four bits are the exponent, with a bias of $2^{4-1}-1=7$
 - The last three bits are the mantissa

- Same general form as IEEE Format
 - Normalized binary scientific point notation
 - Similar special cases for 0, denormalized numbers, NaN, ∞

CSE351, Autumn 2018

Dynamic Range (Positive Only)

	SE	M	Exp	Value	
	0 0000		-6 -6	0 1/8*1/64 = 1/512	closost to zoro
Denormalized	0 0000		- 6	$\frac{1}{6} \frac{1}{64} = \frac{1}{512}$ $\frac{2}{8} \frac{1}{64} = \frac{2}{512}$	Closest to Zero
numbers	0 0000		-6	6/8*1/64 = 6/512	
	0 0000) 111	- 6	7/8*1/64 = 7/512	O
	0 0001	000	- 6	8/8*1/64 = 8/512	smallest norm
	0 0001	001	- 6	9/8*1/64 = 9/512	
	•••				
NI II I	0 0110	110	-1	14/8*1/2 = 14/16	
	0 0110	111	-1	15/8*1/2 = 15/16	closest to 1 below
Normalized	0 0111	000	0	8/8*1 = 1	
numbers	0 0111	001	0	9/8*1 = 9/8	closest to 1 above
	0 0111	010	0	10/8*1 = 10/8	
	•••				
	0 1110	110	7	14/8*128 = 224	
	0 1110) 111	7	15/8*128 = 240	largest norm
	0 1111	000	n/a	inf	

Special Properties of Encoding

- Floating point zero (0+) exactly the same bits as integer zero
 - All bits = 0
- Can (Almost) Use Unsigned Integer Comparison
 - Must first compare sign bits
 - Must consider $0^- = 0^+ = 0$
 - NaNs problematic
 - Will be greater than any other values
 - What should comparison yield?
 - Otherwise OK
 - Denorm vs. normalized
 - Normalized vs. infinity