Integers II
CSE 351 Autumn 2018

Instructor: Justin Hsia
Teaching Assistants:
Akshat Aggarwal
Brian Dai
Kevin Bi
Sophie Tian
An Wang
Britt Henderson
Kory Watson
Teagan Horkan
Andrew Hu
James Shin
Riley Germundson

http://xkcd.com/1953/
Administrivia

- Lab 1a due Monday (10/8)
 - Submit `pointer.c` and `lab1Areflect.txt` to Canvas

- Lab 1b released today, due 10/12
 - Bit puzzles on number representation
 - Can start after today’s lecture, but floating point will be introduced next week
 - Section worksheet from yesterday has helpful examples, too
 - Bonus slides at the end of today’s lecture have relevant examples
Extra Credit

- All labs starting with Lab 1b have extra credit portions
 - These are meant to be fun extensions to the labs

- Extra credit points *don't* affect your lab grades
 - From the course policies: “they will be accumulated over the course and will be used to bump up borderline grades at the end of the quarter.”
 - Make sure you finish the rest of the lab before attempting any extra credit
Integers

- Binary representation of integers
 - Unsigned and signed
 - Casting in C

- Consequences of finite width representations
 - Overflow, sign extension

- Shifting and arithmetic operations
Two’s Complement Arithmetic

- The same addition procedure works for both unsigned and two’s complement integers
 - **Simplifies hardware:** only one algorithm for addition
 - **Algorithm:** simple addition, **discard the highest carry bit**
 - Called modular addition: result is sum \(\text{modulo } 2^w \)

4-bit Examples:

<table>
<thead>
<tr>
<th></th>
<th>0100</th>
<th>1100</th>
<th>0100</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>+3</td>
<td>+3</td>
<td>-3</td>
</tr>
<tr>
<td></td>
<td>0011</td>
<td>0011</td>
<td>1101</td>
</tr>
<tr>
<td>+3</td>
<td>=7</td>
<td>=-1</td>
<td>=1</td>
</tr>
</tbody>
</table>
Why Does Two’s Complement Work?

- For all representable positive integers x, we want:
 \[
 \text{bit representation of } x \\
 + \text{bit representation of } -x \\
 \underline{0} \quad \text{(ignoring the carry-out bit)}
 \]

- What are the 8-bit negative encodings for the following?

 \[
 \begin{align*}
 \end{align*}
 \]
Why Does Two’s Complement Work?

- For all representable positive integers x, we want:

 \[
 \begin{align*}
 \text{bit representation of } x \\
 + \text{bit representation of } -x \\
 0 \quad \text{(ignoring the carry-out bit)}
 \end{align*}
 \]

- What are the 8-bit negative encodings for the following?

 \[
 \begin{align*}
 00000001 & + 11111111 & 100000000 \\
 00000010 & + 11111110 & 100000000 \\
 11000011 & + 00111101 & 100000000
 \end{align*}
 \]

These are the bitwise complement plus 1!

\[-x == \sim x + 1\]
Signed/Unsigned Conversion Visualized

- Two’s Complement → Unsigned
 - Ordering Inversion
 - Negative → Big Positive
Values To Remember

- **Unsigned Values**
 - $U_{\text{Min}} = 0b00...0$
 - $= 0$
 - $U_{\text{Max}} = 0b11...1$
 - $= 2^w - 1$

- **Example:** Values for $w = 64$

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
</tr>
</thead>
<tbody>
<tr>
<td>UMax</td>
<td>18,446,744,073,709,551,615</td>
<td>FF FF FF FF FF FF FF FF FF</td>
</tr>
<tr>
<td>Tmax</td>
<td>9,223,372,036,854,775,807</td>
<td>7F FF FF FF FF FF FF FF FF</td>
</tr>
<tr>
<td>Tmin</td>
<td>-9,223,372,036,854,775,808</td>
<td>80 00 00 00 00 00 00 00 00</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td>FF FF FF FF FF FF FF FF FF</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>00 00 00 00 00 00 00 00 00</td>
</tr>
</tbody>
</table>

- **Two’s Complement Values**
 - $T_{\text{Min}} = 0b10...0$
 - $= -2^{w-1}$
 - $T_{\text{Max}} = 0b01...1$
 - $= 2^{w-1} - 1$
 - $-1 = 0b11...1$
In C: Signed vs. Unsigned

- Casting
 - Bits are unchanged, just interpreted differently!
 - `int` `tx, ty;`
 - `unsigned int` `ux, uy;`
 - *Explicit* casting
 - `tx = (int) ux;`
 - `uy = (unsigned int) ty;`
 - *Implicit* casting can occur during assignments or function calls
 - `tx = ux;`
 - `uy = ty;`
Casting Surprises

❖ Integer literals (constants)
 ▪ By default, integer constants are considered *signed* integers
 • Hex constants already have an explicit binary representation
 ▪ Use “U” (or “u”) suffix to explicitly force *unsigned*
 • Examples: 0U, 4294967259u

❖ Expression Evaluation
 ▪ When you mixed unsigned and signed in a single expression, then *signed values are implicitly cast to unsigned*
 ▪ Including comparison operators <, >, ==, <=, >=
Casting Surprises

- **32-bit examples:**
 - Tmin = -2,147,483,648, Tmax = 2,147,483,647

<table>
<thead>
<tr>
<th>Left Constant</th>
<th>Order</th>
<th>Right Constant</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0000 0000 0000 0000 0000 0000 0000 0000</td>
<td>0U 0000 0000 0000 0000 0000 0000 0000 0000</td>
<td></td>
</tr>
<tr>
<td>-1</td>
<td>1111 1111 1111 1111 1111 1111 1111 1111</td>
<td>0 0000 0000 0000 0000 0000 0000 0000 0000</td>
<td></td>
</tr>
<tr>
<td>-1</td>
<td>1111 1111 1111 1111 1111 1111 1111 1111</td>
<td>0U 0000 0000 0000 0000 0000 0000 0000 0000</td>
<td></td>
</tr>
<tr>
<td>2147483647</td>
<td>0111 1111 1111 1111 1111 1111 1111 1111</td>
<td>-2147483648 1000 0000 0000 0000 0000 0000 0000 0000</td>
<td></td>
</tr>
<tr>
<td>2147483647U</td>
<td>0111 1111 1111 1111 1111 1111 1111 1111</td>
<td>-2147483648 1000 0000 0000 0000 0000 0000 0000 0000</td>
<td></td>
</tr>
<tr>
<td>-1</td>
<td>1111 1111 1111 1111 1111 1111 1111 1111</td>
<td>-2 1111 1111 1111 1111 1111 1111 1111 1110</td>
<td></td>
</tr>
<tr>
<td>(unsigned) -1</td>
<td>1111 1111 1111 1111 1111 1111 1111 1111</td>
<td>-2 1111 1111 1111 1111 1111 1111 1111 1110</td>
<td></td>
</tr>
<tr>
<td>2147483647</td>
<td>0111 1111 1111 1111 1111 1111 1111 1111</td>
<td>2147483648U 1000 0000 0000 0000 0000 0000 0000 0000</td>
<td></td>
</tr>
<tr>
<td>2147483647</td>
<td>0111 1111 1111 1111 1111 1111 1111 1111</td>
<td>(int) 2147483648U 1000 0000 0000 0000 0000 0000 0000 0000</td>
<td></td>
</tr>
</tbody>
</table>
Integers

- Binary representation of integers
 - Unsigned and signed
 - Casting in C
- Consequences of finite width representations
 - Overflow, sign extension
- Shifting and arithmetic operations
Arithmetic Overflow

- When a calculation produces a result that can’t be represented in the current encoding scheme
 - Integer range limited by fixed width
 - Can occur in both the positive and negative directions
- C and Java ignore overflow exceptions
 - You end up with a bad value in your program and no warning/indication... oops!

<table>
<thead>
<tr>
<th>Bits</th>
<th>Unsigned</th>
<th>Signed</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>8</td>
<td>-8</td>
</tr>
<tr>
<td>1001</td>
<td>9</td>
<td>-7</td>
</tr>
<tr>
<td>1010</td>
<td>10</td>
<td>-6</td>
</tr>
<tr>
<td>1011</td>
<td>11</td>
<td>-5</td>
</tr>
<tr>
<td>1100</td>
<td>12</td>
<td>-4</td>
</tr>
<tr>
<td>1101</td>
<td>13</td>
<td>-3</td>
</tr>
<tr>
<td>1110</td>
<td>14</td>
<td>-2</td>
</tr>
<tr>
<td>1111</td>
<td>15</td>
<td>-1</td>
</tr>
</tbody>
</table>
Overflow: Unsigned

- **Addition**: drop carry bit (-2^N)

 \[
 \begin{array}{c}
 15 \\
 \underline{+ 2} \\
 \hline
 17
 \end{array}
 \quad
 \begin{array}{c}
 1111 \\
 \underline{+ 0010} \\
 \hline
 10001
 \end{array}
 \quad
 \begin{array}{c}
 1 \\
 \underline{1} \\
 \hline
 1
 \end{array}
 \\
 \]

- **Subtraction**: borrow ($+2^N$)

 \[
 \begin{array}{c}
 1 \\
 \underline{- 2} \\
 \hline
 -1
 \end{array}
 \quad
 \begin{array}{c}
 10001 \\
 \underline{- 0010} \\
 \hline
 1111
 \end{array}
 \quad
 \begin{array}{c}
 15
 \end{array}
 \\
 \]

$\pm 2^N$ because of modular arithmetic
Overflow: Two’s Complement

- **Addition**:
 \((+)+(+)=(-)\) result?

 \[\begin{array}{c c c}
 6 & 0110 \\
 +3 & +0011 \\
 \hline
 -7 & 1001 \\
 \end{array} \]

- **Subtraction**:
 \((-)+(-)=(+)\)?

 \[\begin{array}{c c c}
 -7 & 1001 \\
 -3 & -0011 \\
 \hline
 -10 & 0110 \\
 \end{array} \]

For signed: overflow if operands have same sign and result’s sign is different
Sign Extension

- What happens if you convert a *signed* integral data type to a larger one?
 - *e.g.* char \rightarrow short \rightarrow int \rightarrow long

- **4-bit \rightarrow 8-bit Example:**
 - Positive Case
 - Add 0’s?
 - 4-bit: 0010 = +2
 - 8-bit: 00000010 = +2
 - Negative Case?
Peer Instruction Question

- Which of the following 8-bit numbers has the same signed value as the 4-bit number \texttt{0b1100}?
 - Underlined digit = MSB
 - Vote at \url{http://PollEv.com/justinh}

A. \texttt{0b 0000 1100}
B. \texttt{0b 1000 1100}
C. \texttt{0b 1111 1100}
D. \texttt{0b 1100 1100}
E. We’re lost...
Sign Extension

- **Task:** Given a w-bit signed integer X, convert it to a $w+k$-bit signed integer X' *with the same value*.

- **Rule:** Add k copies of sign bit
 - Let x_i be the i-th digit of X in binary.
 - $X' = x_{w-1}, \ldots, x_{w-1}, x_{w-2}, \ldots, x_1, x_0$

[Diagram showing the process of sign extension with k copies of the most significant bit (MSB) being added to the original X.]
Sign Extension Example

- Convert from smaller to larger integral data types
- C automatically performs sign extension
 - Java too

```
short int x = 12345;
int ix = (int) x;
short int y = -12345;
int iy = (int) y;
```

<table>
<thead>
<tr>
<th>Var</th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>12345</td>
<td>30 39</td>
<td>00110000 00111001</td>
</tr>
<tr>
<td>ix</td>
<td>12345</td>
<td>00 00 30 39</td>
<td>00000000 00000000 00110000 00111001</td>
</tr>
<tr>
<td>y</td>
<td>-12345</td>
<td>CF C7</td>
<td>11001111 11000111</td>
</tr>
<tr>
<td>iy</td>
<td>-12345</td>
<td>FF FF CF C7</td>
<td>11111111 11111111 11001111 11000111</td>
</tr>
</tbody>
</table>
Integers

- Binary representation of integers
 - Unsigned and signed
 - Casting in C

- Consequences of finite width representations
 - Overflow, sign extension

- Shifting and arithmetic operations
Shift Operations

- Left shift ($x << n$) bit vector x by n positions
 - Throw away (drop) extra bits on left
 - Fill with 0s on right

- Right shift ($x >> n$) bit-vector x by n positions
 - Throw away (drop) extra bits on right
 - Logical shift (for unsigned values)
 - Fill with 0s on left
 - Arithmetic shift (for signed values)
 - Replicate most significant bit on left
 - Maintains sign of x
Shift Operations

- **Left shift** \((x << n)\)
 - Fill with 0s on right

- **Right shift** \((x >> n)\)
 - Logical shift (for **unsigned** values)
 - Fill with 0s on left
 - Arithmetic shift (for **signed** values)
 - Replicate most significant bit on left

Notes:
- Shifts by \(n < 0\) or \(n \geq w\) (bit width of \(x\)) are **undefined**
- **In C:** behavior of \(>>\) is determined by compiler
 - In gcc / C lang, depends on data type of \(x\) (signed/unsigned)
- **In Java:** logical shift is \(>>>\) and arithmetic shift is \(>>\)
Shifting Arithmetic?

- What are the following computing?
 - \(x >> n \)
 - 0b 0100 >> 1 = 0b 0010
 - 0b 0100 >> 2 = 0b 0001
 - Divide by \(2^n \)
 - \(x << n \)
 - 0b 0001 << 1 = 0b 0010
 - 0b 0001 << 2 = 0b 0100
 - Multiply by \(2^n \)

- Shifting is faster than general multiply and divide operations
Left Shifting Arithmetic 8-bit Example

- No difference in left shift operation for unsigned and signed numbers (just manipulates bits)
 - Difference comes during interpretation: \(x \times 2^n \)?

\[
\begin{align*}
\text{x} & = 25; \quad 00011001 = 25 & \text{Signed} & \text{Unsigned} \\
L1 &= \text{x} \ll 2; \quad 0001100100 = 100 & 100 \\
L2 &= \text{x} \ll 3; \quad 00011001000 = -56 & 200 \\
L3 &= \text{x} \ll 4; \quad 000110010000 = -112 & 144
\end{align*}
\]
Right Shifting Arithmetic 8-bit Examples

- **Reminder**: C operator `>>` does *logical* shift on unsigned values and *arithmetic* shift on signed values
 - **Logical Shift**: $x / 2^n$?

\[
\begin{align*}
 xu &= 240u; \quad 11110000 \quad = \quad 240 \\
 R1u &= xu >> 3; \quad 00011110000 \quad = \quad 30 \\
 R2u &= xu >> 5; \quad 0000011110000 \quad = \quad 7
\end{align*}
\]
Right Shifting Arithmetic 8-bit Examples

- **Reminder:** C operator `>>` does *logical* shift on unsigned values and *arithmetic* shift on signed values
 - **Arithmetic Shift:** \(x/2^n \)?

\[
x_{s} = -16; \quad 11110000 = -16
\]

\[
R_{1s} = x_{u} >> 3; \quad 11111110000 = -2
\]

\[
R_{2s} = x_{u} >> 5; \quad 1111111110000 = -1
\]

Rounding (down)
Peer Instruction Question

For the following expressions, find a value of `signed char x`, if there exists one, that makes the expression `TRUE`. Compare with your neighbor(s)!

- Assume we are using 8-bit arithmetic:
 - `x == (unsigned char) x`
 - `x >= 128U`
 - `x != (x>>2) << 2`
 - `x == -x`
 - Hint: there are two solutions
 - `(x < 128U) && (x > 0x3F)`
Summary

- Sign and unsigned variables in C
 - Bit pattern remains the same, just interpreted differently
 - Strange things can happen with our arithmetic when we convert/cast between sign and unsigned numbers
 - Type of variables affects behavior of operators (shifting, comparison)
- We can only represent so many numbers in \(w \) bits
 - When we exceed the limits, \textit{arithmetic overflow} occurs
 - \textit{Sign extension} tries to preserve value when expanding
- Shifting is a useful bitwise operator
 - Right shifting can be arithmetic (sign) or logical (0)
 - Can be used in multiplication with constant or bit masking
Some examples of using shift operators in combination with bitmasks, which you may find helpful for Lab 1.

- Extract the 2nd most significant byte of an \texttt{int}
- Extract the sign bit of a signed \texttt{int}
- Conditionals as Boolean expressions
Using Shifts and Masks

- **Extract the 2nd most significant byte of an \texttt{int}:**
 - First shift, then mask: \((x>>16) \& 0xFF\)
 - Or first mask, then shift: \((x \& 0xFF0000) >>16\)

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>00000001</td>
<td>00000010</td>
<td>00000011</td>
<td>00000100</td>
</tr>
<tr>
<td>(x>>16)</td>
<td>00000000</td>
<td>00000000</td>
<td>00000001</td>
<td>00000010</td>
</tr>
<tr>
<td>0xFF</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
<td>11111111</td>
</tr>
<tr>
<td>(x>>16) & 0xFF</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
<td>00000100</td>
</tr>
</tbody>
</table>

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>00000001</td>
<td>00000010</td>
<td>00000011</td>
<td>00000100</td>
</tr>
<tr>
<td>0xFF0000</td>
<td>00000000</td>
<td>11111111</td>
<td>00000000</td>
<td>00000000</td>
</tr>
<tr>
<td>(x & 0xFF0000)</td>
<td>00000000</td>
<td>00000010</td>
<td>00000000</td>
<td>00000000</td>
</tr>
<tr>
<td>((x&0xFF0000) >>16)</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
<td>00000100</td>
</tr>
</tbody>
</table>
Using Shifts and Masks

- **Extract the sign bit of a signed int:**
 - First shift, then mask: `(x>>31) & 0x1`
 - Assuming arithmetic shift here, but this works in either case
 - Need mask to clear 1s possibly shifted in

<table>
<thead>
<tr>
<th>x</th>
<th>00000001 00000010 00000011 00000100</th>
</tr>
</thead>
<tbody>
<tr>
<td>x>>31</td>
<td>00000000 00000000 00000000 00000000 0</td>
</tr>
<tr>
<td>0x1</td>
<td>00000000 00000000 00000000 00000001</td>
</tr>
<tr>
<td>(x>>31) & 0x1</td>
<td>00000000 00000000 00000000 00000000 00000000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>x</th>
<th>10000001 00000010 00000011 00000100</th>
</tr>
</thead>
<tbody>
<tr>
<td>x>>31</td>
<td>111111111 111111111 111111111 111111111</td>
</tr>
<tr>
<td>0x1</td>
<td>00000000 00000000 00000000 00000001</td>
</tr>
<tr>
<td>(x>>31) & 0x1</td>
<td>00000000 00000000 00000000 00000000 00000001</td>
</tr>
</tbody>
</table>
Using Shifts and Masks

- Conditionals as Boolean expressions
 - For int x, what does \((x\ll31)\gg31\) do?

<table>
<thead>
<tr>
<th>x=!!123</th>
<th>00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001</th>
</tr>
</thead>
<tbody>
<tr>
<td>x<<31</td>
<td>10000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000</td>
</tr>
<tr>
<td>((x<<31)\gg31)</td>
<td>11111111 11111111 11111111 11111111 11111111 11111111 11111111 11111111</td>
</tr>
<tr>
<td>!x</td>
<td>00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000</td>
</tr>
<tr>
<td>!x<<31</td>
<td>00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000</td>
</tr>
<tr>
<td>((!x<<31)\gg31)</td>
<td>00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000</td>
</tr>
</tbody>
</table>

- Can use in place of conditional:
 - In C: \(\text{if}(x) \{ a=y; \} \text{ else } \{ a=z; \} \) equivalent to \(a=x?y:z;\)
 - \(a=((x<<31)>>31)\&y) \mid ((!x<<31)>>31)\&z);\)