Integers II
CSE 351 Autumn 2018

Instructor: Justin Hsia
Teaching Assistants: Akshat Aggarwal, An Wang, Andrew Hu
Brian Dai, Britt Henderson, James Shin
Kevin Bi, Kory Watson, Riley Germundson
Sophie Tian, Teagan Horkan

http://xkcd.com/1953/
Administrivia

- Lab 1a due Monday (10/8)
 - Submit `pointer.c` and `lab1Areflect.txt` to Canvas

- Lab 1b released today, due 10/12
 - Bit puzzles on number representation
 - Can start after today’s lecture, but floating point will be introduced next week
 - Section worksheet from yesterday has helpful examples, too
 - Bonus slides at the end of today’s lecture have relevant examples
Extra Credit

- All labs starting with Lab 1b have extra credit portions
 - These are meant to be fun extensions to the labs

- Extra credit points *don't* affect your lab grades
 - From the course policies: “they will be accumulated over the course and will be used to bump up borderline grades at the end of the quarter.”
 - Make sure you finish the rest of the lab before attempting any extra credit
Integers

- **Binary representation of integers**
 - Unsigned and signed
 - Casting in C

- **Consequences of finite width representations**
 - Overflow, sign extension

- **Shifting and arithmetic operations**
Two’s Complement Arithmetic

- The same addition procedure works for both unsigned and two’s complement integers
 - **Simplifies hardware:** only one algorithm for addition
 - **Algorithm:** simple addition, *discard the highest carry bit*
 - Called modular addition: result is sum *modulo* 2^w

4-bit Examples:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0100</td>
<td>-4</td>
<td>1100</td>
</tr>
<tr>
<td>+3</td>
<td>+0011</td>
<td>+3</td>
<td>+0011</td>
</tr>
<tr>
<td>7</td>
<td>0111</td>
<td>-1</td>
<td>1111</td>
</tr>
</tbody>
</table>

- ✔️ ✔️ ✔️
Why Does Two’s Complement Work?

- For all representable positive integers x, we want:

 $\left\{ \begin{array}{ll}
 \text{bit representation of } & x \\
 + \text{ bit representation of } & -x \\
 0 & \text{(ignoring the carry-out bit)}
 \end{array} \right.$

- What are the 8-bit negative encodings for the following?

 $\begin{array}{ccc}
 00000001 & + & ??????? \\
 \hline
 00000000 & + & ??????? \\
 \hline
 11000011 & + & ??????? \\
 \hline
 \end{array}$
Why Does Two’s Complement Work?

- For all representable positive integers x, we want:
 - $x + (\overline{x}) = \hat{0}b_1..._1$
 - $x + (\overline{x}) = -1$
 - $x + (\overline{x} + 1) = 0$
 - $x = \overline{x} + 1$

- What are the 8-bit negative encodings for the following?

<table>
<thead>
<tr>
<th>Bit Representation of x</th>
<th>Bit Representation of $-x$</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>00000001</td>
<td>11111111</td>
<td>0000000000</td>
</tr>
<tr>
<td>+ 11111111</td>
<td></td>
<td>1000000000</td>
</tr>
<tr>
<td>11000011</td>
<td>00000010</td>
<td>1100001111</td>
</tr>
<tr>
<td>+ 11111110</td>
<td></td>
<td>1111111100</td>
</tr>
<tr>
<td>00111110</td>
<td></td>
<td>0011111011</td>
</tr>
<tr>
<td>+ 00111110</td>
<td></td>
<td>0000000000</td>
</tr>
</tbody>
</table>

These are the bitwise complement plus 1!

$-x = \overline{x} + 1$
Signed/Unsigned Conversion Visualized

- Two’s Complement → Unsigned
 - Ordering Inversion
 - Negative → Big Positive

$$2^{w-1} - 1 = 0b01\ldots1$$

Unsigned Range

$$0b10\ldots0 = 2^{w-1}$$

Two’s Complement Range

$$-2^{w-1} = 0b10\ldots0 = T_{\text{Min}}$$

$$T_{\text{Max}} + 1$$

$$T_{\text{Max}}$$

$$0$$

$$-1$$

$$-2$$

$$U_{\text{Max}}$$

$$U_{\text{Max}} - 1$$

Unbounded Range

$$U_{\text{Min}}$$
Values To Remember

- **Unsigned Values**
 - $\text{UMin} = 0b00...0 = 0$
 - $\text{UMax} = 0b11...1 = 2^w - 1$

- **Example:** Values for $w = 64$

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
</tr>
</thead>
<tbody>
<tr>
<td>UMax</td>
<td>18,446,744,073,709,551,615</td>
<td>FF FF FF FF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FF FF FF FF FF</td>
</tr>
<tr>
<td>Tmax</td>
<td>9,223,372,036,854,775,807</td>
<td>7F FF FF FF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FF FF FF FF FF</td>
</tr>
<tr>
<td>Tmin</td>
<td>-9,223,372,036,854,775,808</td>
<td>80 00 00 00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>00 00 00 00 FF</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td>FF FF FF FF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FF FF FF FF FF</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>00 00 00 00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>00 00 00 00 FF</td>
</tr>
</tbody>
</table>

- **Two’s Complement Values**
 - $\text{TMin} = 0b10...0 = -2^{w-1}$
 - $\text{TMax} = 0b01...1 = 2^{w-1} - 1$
 - $-1 = 0b11...1$
In C: Signed vs. Unsigned

Casting

- Bits are unchanged, just interpreted differently!
 - `int` tx, ty;
 - `unsigned int` ux, uy;

- *Explicit* casting
 - `tx = (int) ux;`
 - `uy = (unsigned int) ty;`

- *Implicit* casting can occur during assignments or function calls.
 - *cast to target variable/parameter type*
 - `tx = ux;`
 - `uy = ty;`
 - (also implicitly occurs with printf format specifiers)
Casting Surprises

- **Integer literals (constants)**
 - By default, integer constants are considered *signed* integers
 - Hex constants already have an explicit binary representation
 - Use “U” (or “u”) suffix to explicitly force *unsigned*
 - Examples: `0U`, `4294967259u`

- **Expression Evaluation**
 - When you mixed unsigned and signed in a single expression, then *signed values are implicitly cast to unsigned*
 - Including comparison operators `<`, `>`, `==`, `<=`, `>=`
Casting Surprises

- 32-bit examples:
 - $T_{\text{Min}} = -2,147,483,648$, $T_{\text{Max}} = 2,147,483,647$

<table>
<thead>
<tr>
<th>Left Constant</th>
<th>Order</th>
<th>Right Constant</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0000 0000 0000 0000 0000 0000 0000</td>
<td>\geq</td>
<td>0U 0000 0000 0000 0000 0000 0000 0000</td>
<td>unsigned</td>
</tr>
<tr>
<td>-1 1111 1111 1111 1111 1111 1111 1111</td>
<td>$<$</td>
<td>0 0000 0000 0000 0000 0000 0000 0000</td>
<td>signed</td>
</tr>
<tr>
<td>-1 1111 1111 1111 1111 1111 1111 1111</td>
<td>$>$</td>
<td>0U 0000 0000 0000 0000 0000 0000 0000</td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647 0111 1111 1111 1111 1111 1111 1111</td>
<td>$>$</td>
<td>-2147483648 1000 0000 0000 0000 0000 0000 0000</td>
<td>signed</td>
</tr>
<tr>
<td>2147483647U 0111 1111 1111 1111 1111 1111 1111</td>
<td>$<$</td>
<td>-2147483648 1000 0000 0000 0000 0000 0000 0000</td>
<td>unsigned</td>
</tr>
<tr>
<td>-1 1111 1111 1111 1111 1111 1111 1111</td>
<td>$>$</td>
<td>-2 1111 1111 1111 1111 1111 1111 1110</td>
<td>signed</td>
</tr>
<tr>
<td>(unsigned) -1 1111 1111 1111 1111 1111 1111 1111</td>
<td>$>$</td>
<td>-2 1111 1111 1111 1111 1111 1111 1110</td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647 0111 1111 1111 1111 1111 1111 1111</td>
<td>$<$</td>
<td>2147483648U 1000 0000 0000 0000 0000 0000 0000</td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647 0111 1111 1111 1111 1111 1111 1111</td>
<td>$>$</td>
<td>(int) 2147483648U 1000 0000 0000 0000 0000 0000 0000</td>
<td>signed</td>
</tr>
</tbody>
</table>
Integers

- Binary representation of integers
 - Unsigned and signed
 - Casting in C
- **Consequences of finite width representations**
 - Overflow, sign extension
- Shifting and arithmetic operations
Arithmetic Overflow

- When a calculation produces a result that can’t be represented in the current encoding scheme
 - Integer range limited by fixed width
 - Can occur in both the positive and negative directions
- C and Java ignore overflow exceptions
 - You end up with a bad value in your program and no warning/indication… oops!

<table>
<thead>
<tr>
<th>Bits</th>
<th>Unsigned</th>
<th>Signed</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0\textsuperscript{\textsubscript{UMin}}</td>
<td>0 \textsuperscript{\textsubscript{U}}</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7\textsuperscript{\textsubscript{TMax}}</td>
<td>7 \textsuperscript{\textsubscript{T}}</td>
</tr>
<tr>
<td>1000</td>
<td>8\textsuperscript{\textsubscript{TMin}}</td>
<td>-8</td>
</tr>
<tr>
<td>1001</td>
<td>9</td>
<td>-7</td>
</tr>
<tr>
<td>1010</td>
<td>10</td>
<td>-6</td>
</tr>
<tr>
<td>1011</td>
<td>11</td>
<td>-5</td>
</tr>
<tr>
<td>1100</td>
<td>12</td>
<td>-4</td>
</tr>
<tr>
<td>1101</td>
<td>13</td>
<td>-3</td>
</tr>
<tr>
<td>1110</td>
<td>14</td>
<td>-2</td>
</tr>
<tr>
<td>1111</td>
<td>15\textsuperscript{\textsubscript{UMax}}</td>
<td>-1</td>
</tr>
</tbody>
</table>
Overflow: Unsigned

- **Addition**: drop carry bit (-2^N)

 \[
 \begin{array}{c}
 15 \\
 + \, 2 \\
 \hline
 17 \\
 \end{array}
 \quad \quad
 \begin{array}{c}
 1111 \\
 + \, 0010 \\
 \hline
 10001 \\
 \end{array}
 \]

- **Subtraction**: borrow ($+2^N$)

 \[
 \begin{array}{c}
 1 \\
 \hline
 2 \\
 \end{array}
 \quad \quad
 \begin{array}{c}
 10001 \\
 - \, 0010 \\
 \hline
 1111 \\
 \end{array}
 \]

±2^N because of modular arithmetic

$2^4 = 16$
Overflow: Two’s Complement

- **Addition:** \((+)+(+)=(-)\) result?

\[
\begin{array}{c}
6 \\
+ 3 \\
\hline \\
9
\end{array}
\quad\quad
\begin{array}{c}
0110 \\
+ 0011 \\
\hline \\
1001
\end{array}
\quad\quad
-7

- **Subtraction:** \((-)+(-)=(+)\)?

\[
\begin{array}{c}
-7 \\
- 3 \\
\hline \\
-10
\end{array}
\quad\quad
\begin{array}{c}
1001 \\
- 0011 \\
\hline \\
0110
\end{array}
\quad\quad
6

For signed: overflow if operands have the same sign and result’s sign is different
Sign Extension

- What happens if you convert a *signed* integral data type to a larger one?
 - *e.g.* char → short → int → long

- **4-bit → 8-bit Example:**
 - Positive Case
 - 4-bit: 0010 = +2
 - 8-bit: 00000010 = +2
 - Negative Case?
Peer Instruction Question

Which of the following 8-bit numbers has the same signed value as the 4-bit number \(0b1100 \)?

- Underlined digit = MSB

A. 0b 0000 1100 (add zeros)
B. 0b 1000 1100 (add leading 1)
C. 0b 1111 1100 (add ones)
D. 0b 1100 1100 (duplicate)
E. We’re lost...

\[\begin{align*}
-8^{4} & + 2^{3} + 2^{1} = -116 \\
-8 + 4 &= -4 \\
-x &= 0 0 1 1 + 1 \\
0100 &= 4 \\
\Rightarrow x &= -4
\end{align*} \]
Sign Extension

- **Task:** Given a w-bit signed integer X, convert it to a $w+k$-bit signed integer X' *with the same value*

- **Rule:** Add k copies of sign bit
 - Let x_i be the i-th digit of X in binary
 - $X' = x_{w-1}, \ldots, x_{w-1}, x_{w-1}, x_{w-2}, \ldots, x_1, x_0$
 - k copies of MSB
 - Original X

$L05$: Integers II

CSE351, Autumn 2018
Sign Extension Example

- Convert from smaller to larger integral data types
- C automatically performs sign extension
 - Java too

```java
short int x = 12345;
int ix = (int) x;
short int y = -12345;
int iy = (int) y;
```

<table>
<thead>
<tr>
<th>Var</th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>12345</td>
<td>30 39</td>
<td>00110000 00111001</td>
</tr>
<tr>
<td>ix</td>
<td>12345</td>
<td>00 00 30 39</td>
<td>00000000 00000000 00110000 00111001</td>
</tr>
<tr>
<td>y</td>
<td>-12345</td>
<td>CF C7</td>
<td>11001111 11000111</td>
</tr>
<tr>
<td>iy</td>
<td>-12345</td>
<td>FF FF CF C7</td>
<td>11111111 11111111 11001111 11000111</td>
</tr>
</tbody>
</table>
Integers

- Binary representation of integers
 - Unsigned and signed
 - Casting in C
- Consequences of finite width representations
 - Overflow, sign extension
- Shifting and arithmetic operations
Shift Operations

- **Left shift** \((x << n)\) bit vector \(x\) by \(n\) positions
 - Throw away (drop) extra bits on left
 - Fill with 0s on right

- **Right shift** \((x >> n)\) bit-vector \(x\) by \(n\) positions
 - Throw away (drop) extra bits on right
 - Logical shift (for **unsigned** values)
 - Fill with 0s on left
 - Arithmetic shift (for **signed** values)
 - Replicate most significant bit on left
 - Maintains sign of \(x\)
Shift Operations

- **Left shift** \((x << n)\)
 - Fill with 0s on right

- **Right shift** \((x >> n)\)
 - **Logical shift** (for *unsigned* values)
 - Fill with 0s on left
 - **Arithmetic shift** (for *signed* values)
 - Replicate most significant bit on left

- **Notes:**
 - Shifts by \(n < 0\) or \(n \geq w\) (bit width of \(x\)) are *undefined*.
 - **In C**: behavior of \(>>\) is determined by compiler
 - In gcc / C lang, depends on data type of \(x\) (signed/unsigned)
 - **In Java**: logical shift is \(>>>\) and arithmetic shift is \(>>\)
Shifting Arithmetic?

- What are the following computing?
 - $x \gg n$
 - $0b\ 0100 \gg 1 = 0b\ 0010$
 - $0b\ 0100 \gg 2 = 0b\ 0001$
 - **Divide** by 2^n
 - $x \ll n$
 - $0b\ 0001 \ll 1 = 0b\ 0010$
 - $0b\ 0001 \ll 2 = 0b\ 0100$
 - **Multiply** by 2^n

- Shifting is faster than general multiply and divide operations
Left Shifting Arithmetic 8-bit Example

- No difference in left shift operation for unsigned and signed numbers (just manipulates bits)
 - Difference comes during interpretation: \(x \times 2^n \)?

\[
\begin{align*}
x &= 25; & 00011001 &= 25 & 25 \\
L1 &= x << 2; & 0001100100 &= 100 & 100 \\
L2 &= x << 3; & 00011001000 &= -56 & 200 \\
L3 &= x << 4; & 000110010000 &= -112 & 144
\end{align*}
\]

Signed Overflow

Unsigned Overflow
Right Shifting Arithmetic 8-bit Examples

- **Reminder:** C operator `>>` does *logical* shift on unsigned values and *arithmetic* shift on signed values
 - **Logical Shift:** $x/2^n$?

\[
\begin{align*}
x_u &= 240u; \quad 11110000 \quad = \quad 240 \\
R1_u &= x_u >> 3; \quad 00011110000 \quad = \quad 30 \quad \frac{1}{8} = 30 \\
R2_u &= x_u >> 5; \quad 0000011110000 \quad = \quad 7 \quad \frac{1}{4} = 7.5
\end{align*}
\]

(rounding (down))
Right Shifting Arithmetic 8-bit Examples

- **Reminder:** C operator `>>` does *logical* shift on *unsigned* values and *arithmetic* shift on *signed* values
 - **Arithmetic Shift:** \(x / 2^n \)?

\[
\begin{align*}
xs &= -16; \quad 11110000 &= -16 \\
R1s &= xu >> 3; \quad 11111110 &= -2 \\
R2s &= xu >> 5; \quad 1111111110 &= -1
\end{align*}
\]

- **Rounding (down)**
Peer Instruction Question

For the following expressions, find a value of `signed char x`, if there exists one, that makes the expression `TRUE`. Compare with your neighbor(s)!

- **Example:**
 - `x == (unsigned char) x`
 - `x = 0`
 - `x >= 128U`
 - `x = -1`
 - `x != (x>>2)<<2`
 - `x = 3`
 - `x == -x`
 - `x = 0`
 - Hint: there are two solutions
 - `(x < 128U) && (x > 0x3F)`
 - `x = 64`
Summary

- Sign and unsigned variables in C
 - Bit pattern remains the same, just interpreted differently
 - Strange things can happen with our arithmetic when we convert/cast between sign and unsigned numbers
 - Type of variables affects behavior of operators (shifting, comparison)

- We can only represent so many numbers in w bits
 - When we exceed the limits, arithmetic overflow occurs
 - Sign extension tries to preserve value when expanding

- Shifting is a useful bitwise operator
 - Right shifting can be arithmetic (sign) or logical (0)
 - Can be used in multiplication with constant or bit masking
Some examples of using shift operators in combination with bitmasks, which you may find helpful for Lab 1.

- Extract the 2nd most significant byte of an \texttt{int}
- Extract the sign bit of a signed \texttt{int}
- Conditionals as Boolean expressions
Using Shifts and Masks

- Extract the 2nd most significant \textit{byte} of an \texttt{int}:
 - First shift, then mask: \((x\gg 16) \& 0xFF\)
 - Or first mask, then shift: \((x \& 0xFF0000) \gg 16\)
Using Shifts and Masks

- Extract the *sign bit* of a signed int:
 - First shift, then mask: \((x >> 31) \& 0x1\)
 - Assuming arithmetic shift here, but this works in either case
 - Need mask to clear 1s possibly shifted in

<table>
<thead>
<tr>
<th></th>
<th>(x)</th>
<th>(x >> 31)</th>
<th>(0x1)</th>
<th>((x >> 31) & 0x1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>00000001 00000010 00000011 00000100</td>
<td>00000000 00000000 00000000 00000000</td>
<td>00000000 00000000 00000000 00000000</td>
<td>00000000 00000000 00000000 00000000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>(x)</th>
<th>(x >> 31)</th>
<th>(0x1)</th>
<th>((x >> 31) & 0x1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10000001 00000010 00000011 00000100</td>
<td>11111111 11111111 11111111 11111111</td>
<td>00000000 00000000 00000000 00000000</td>
<td>00000000 00000000 00000000 00000000</td>
</tr>
</tbody>
</table>
Using Shifts and Masks

- Conditionals as Boolean expressions
 - For `int x`, what does `(x<<31)>>31` do?

<table>
<thead>
<tr>
<th>x=!!123</th>
<th>00000000 00000000 00000000 00000001</th>
</tr>
</thead>
<tbody>
<tr>
<td>x<<31</td>
<td>10000000 00000000 00000000 00000000</td>
</tr>
<tr>
<td><code>(x<<31)>>31</code></td>
<td>11111111 11111111 11111111 11111111</td>
</tr>
<tr>
<td>!x</td>
<td>00000000 00000000 00000000 00000000</td>
</tr>
<tr>
<td>!x<<31</td>
<td>00000000 00000000 00000000 00000000</td>
</tr>
<tr>
<td><code>(!x<<31)>>31</code></td>
<td>00000000 00000000 00000000 00000000</td>
</tr>
</tbody>
</table>

- Can use in place of conditional:
 - In C: `if(x) {a=y;} else {a=z;}` equivalent to `a=x?y:z;`
 - `a=((x<<31)>>31)&y) | (((!x<<31)>>31)&z);`