CSE351 Section 6: Arrays and Structs

We have a two-dimensional matrix of integer data of size M rows and N columns. We are considering 3
different representation schemes:

1) 2-dimensional array int array2D[]1[1, /I M*N array of ints
2) 2-level array int *array2L[], and /I M array of int arrays
3) array of linked lists struct node *arrayLL[]. /I M array of linked lists (struct node)
Consider the case where M = 3 and N = 4. The declarations are given below:
2-dimensional array: 2-level array: Array of linked lists:
int array2D[3][4]1; int rO[4], ri[4], r2[4]; struct node {
int *array2L[] = {r0,rl1,r2}; int col, num;

struct node *next;
};
struct node *arrayLL[3];
// code to build out LLs

0 0 1 0
For example, the diagrams below correspond to the matrix [—4 0 5 O0fforarray2L and arrayLL:
0 0 0 O
P fﬁ I{/—w col next
array2L[0]| ——r0 mmnm arrayLL[0] l 0 | ol I | | 1 | 0| | | 2 I 1] | | 3 r:l.?m Q_l

aroyui| 1= ri[a[o]5]0] | o= 4~[o[4[7] [i[e]] [2[5]] [3[0]2]
smauz2)| —r[0]o]0]0] | ™™ J~[oTo[7] [i[o]] [2[e]7] [Z[o]2]

@ = null pointer

a) Fillin the following comparison chart:

2-dim array 2-level array Array of LLs:

Overall Memory Used M*N*sizeof(int) = 48 B M*N*sizeof(int) + M*sizeof(struct node *) +
M*sizeof(int *) =72 B M*N*sizeof(struct node)
=216 B

Largest guaranteed The whole array (48 B) The array of pointers The array of pointers (24
continuous chunk of (24 B) > row array (16 B) | B) > struct (16 B)
memory
Smallest guaranteed The whole array (48 B) Each row array (16 B) Each struct node (16 B)
continuous chunk of
memory
Data type returned by: array2D[1] array2L[1] arrayLL[1]

int * int * node struct *
Number of memory 1 2 First node in LL: 2
accesses to get int in the
BEST case
Number of memory 1 2 Lastnodein LL: 5
accesses to get int in the (we have to read next)
WORST case

b) Sam Student claims that since our arrays are relatively small (N < 256), we can save space by storing the
col field as a char in struct node. Is this correct? If so, how much space do we save? If not, is this an
example of internal or external fragmentation?

No. Alignment requirement of K = 4 for int num leaves 3 bytes of internal fragmentation between col
and num.

