
1. Number Representation – Integers (13 Autumn)

a) Explain why we have a Carry-Flag and an Overflow-Flag in x86 condition codes.
What is the difference between the two? (Explain in at most two sentences.)

The carry flag is used for unsigned numbers and indicates a carry-out of 1 during addition from
the most-significant-bit. The overflow flag applies to signed arithmetic and indicates that the
addition yielded a number that was too large a positive or too small a negative value.

b) Add 11011001 and 01100011 as two's complement 8-bit integers & convert the result
to decimal notation.

11011001 = -39
+ 01100011 = + +99

00111100 = +60

c) Convert your answer from the previous problem to a 2-digit hex value.

60 = 0x3c

2. Floating-Point Number Representation (based on 12 Spring)

A new pizzeria has opened on the Ave. It is mysteriously called “Pizza 0x40490FDB”. Given that you are
in CSE351, you have a hunch what the mystery might be. Consider the string of hex digits as a 32-bit IEEE
floating point number (8-bit exponent and 23-bit fraction).

a) Fill in the hexadecimal digits in the bytes below and then translate them to individual bits.

8 hex digits in 4 bytes: 40 49 0F DB 

32 bits: 01000000 01001001 00001111 11011011

b) Is this number positive or negative?

Positive

c) What is the exponent?
(exponents are biased in this representation so make sure to make this adjustment)

 1000 0000 128-Bias = 128-127 = 1

d) What is the significand in binary?
(only use the first 7 bits of the fraction, ignore the lower-order 16 bits)

 frac = 1001001...011 So significand = 1.1001001

e) What is the value of the number in binary?

1.1001001 * 21=11.001001 (shifted the binary point left by 1)

f) What is the decimal number represented?
(only show two decimal digits after the decimal point)

 11.001001 = 2 + 1 + .125 + .015625 = 3.14...

g) What is the pizzeria’s mystery name?

 Pizza Pi

3. Arrays – C to Assembly (based on 14 Autumn)

Given the following C function:

long sum_pair(long *z, long index) {

return z[index] + z[index + 1];
}

Write x86-64 assembly code for this function here. You can assume that z points to an array of 16
elements, and 0 <= index < 15.
Comments are not required but could help for partial credit.

sum_pair:
movq (%rdi,%rsi,8), %rax
addq 8(%rdi,%rsi,8), %rax
ret

4. Assembly and C (15 Winter)

Consider the following x86-64 assembly and C code:

<do_something>:

xor %rax,%rax
cmp $0x0,%rsi
 jle <end>
sub $0x1,%rsi

<loop>:
lea (%rdi,%rsi, 2),%rdx
add (%rdx),%ax
sub $0x1,%rsi
jns <loop>

<end>:

ret

short do_something(short* a, int len) {

short result = 0;
for (int i = len – 1 ; i >= 0; i--) {

 result += a[i] ;
}
return result;

}

a) Both code segments are implementations of the unknown function do_something. Fill in the missing
blanks in both versions. (Hint: %rax and %rdi are used for result and a respectively. %rsi is used for
both len and i)

b) Briefly describe the value that do something returns and how it is computed. Use only variable names
from the C version in your answer.

do_something returns the sum of the shorts pointed to by a. It does so by traversing the array
backwards.

5. Stack Discipline (14 Spring)

a)

b) How many total bytes of local stack space are created in each frame (in decimal)?

32 (24 allocated explicitly and 8 for the return address.)

c) When the function begins, where are the arguments (a, b) stored?

They are stored in the registers %rdi and %rsi, respectively.

d) From a memory-usage perspective, why are iterative algorithms generally preferred over recursive
algorithms?

Recursive algorithm continue to grow the stack for the maximum number of recursions
which may be hard to estimate.

Memory address on stack line) Value (8 bytes per line)
0x7ffffffffffffad0

Return address back to main <-%rsp points here at
start of procedure

0x7ffffffffffffac8

1st of 3 local variables on stack
(argument a= 144)

0x7ffffffffffffac0

2nd of 3 local variables on stack
(argument b = 64)

0x7ffffffffffffab8

3rd of 3 local variables on stack
(unused)

0x7ffffffffffffab0

Return address back to gcd(144, 64)

0x7ffffffffffffaa8

1st of 3 local variables on stack
(argument a = 64)

0x7ffffffffffffaa0

2nd of 3 local variables on stack
(argument b = 16)

0x7ffffffffffffa98

3rd of 3 local variables on stack (unused)

0x7ffffffffffffa90

Return address back to gcd(64,16)

0x7ffffffffffffa88

1st of 3 local variables on stack
(argument a = 16)

0x7ffffffffffffa80

2nd of 3 local variables on stack
(argument b = 0)

0x7ffffffffffffa78

3rd of 3 local variables on stack (unused) <-%rsp at “return a” in
3rd recursive call

0x7ffffffffffffa70

