
CSE 351
GDB + Lab 2

Lab 2
• Already out!
• Due Friday, February 3, 2017 at 5:00pm

• Reading and understanding x86_64 assembly
• Debugging and disassembling programs

• Today:
• General debugging for C with GDB

2

GDB
• GNU Debugger

• GDB is your best friend
• start, stop, peek in, poke at your program

• Today we will be going over many of the features that
will make GDB a great resource for you this quarter

• Useful in future classes!
• CSE 333, CSE 451, CSE 484 etc.

3

Breakpoints
• In order to step through code, we need to be able to

pause execution.

• GDB allows you to set breakpoints, just like when you
debugged Java programs in Eclipse or jGRASP.

• break (b for short) command creates breakpoints.
• info break shows your breakpoints

4

int bar(int x) {
 int a;
 a = baz(x);
 return a + 1;
}

Stepping Through Code

5

int foo() {
 int x,y,z;
 x = 5;
 y = bar(x);
 z = y - 2;
 return z;
}

int baz(int x) {
 return x << 1;
}

int bar(int x) {
 int a;
 a = baz(x);
 return a + 1;
}

Stepping Through Code

6

int foo() {
 int x,y,z;
 x = 5;
 y = bar(x);
 z = y - 2;
 return z;
}

int baz(int x) {
 return x << 1;
}

next

step

finish

continue

backtrace

...
foo()
bar(x=5)
baz(x=5)

Printing
• print to look at values

• x to examine memory

• help x to see how to use it
• help anything else!

7

How can I display something persistently?
− display /i $pc (current instruction)
− display /x $rax (contents of %rax in hex)
− display /16bd $rdi (16 bytes of memory

pointed to by %rdi as integers in decimal)

Printing

Debugging
• GDB will stop you when you get an error

• null-dereference, 1/0

• backtrace (bt) shows how you got there
• Viewing a backtrace can be very helpful in

debugging.

• list shows you C code
• disas shows you assembly

• objdump as well

9

• Parameters: %rdi, %rsi, %rdx, %rcx,
%r8, %r9

• Return value: %rax
• We’ll see how this is used in phase_1 of the

lab

Register Conventions

• Let’s say one of your functions looks like
foo(){
 int bar = some + complex + calculation;
 int bar2 = complex_subroutine();
 return bar * bar2;
}
• What happens to ‘bar’ if it was in a register?
• Some registers are caller-saved, others callee-

saved
• Why have a calling convention? Linked

libraries, …

Register Conventions

The x86 Calling Convention

Caller-Saved Registers Callee-Saved Registers
%rax Return Value
%rdi

Arguments 1-6

%rsi

%rdx

%rcx

%r8

%r9

%r10
Temporaries%r11

%rbx

Temporaries
%r12

%r13

%r14

%rbp Base Pointer
%rsp Stack Pointer

• 1-bit condition code registers [CF, SF, ZF, OF]
• Set as side effect by arithmetic instructions or

by cmp, test
• CF – Carry Flag

• Set if addition causes a carry out of the most
significant (leftmost) bit.

• SF – Sign Flag
• Set if the result had its most significant bit set

(negative in two’s complement)
• ZF – Zero Flag

• Set if the result was zero
• OF – Overflow Flag

• If the addition with the sign bits off yields a result
number with the sign bit on or vice versa

Control Flow

Lab 2
• Requires you to defuse “bombs” by entering a

series of passcodes
• Not real bombs/viruses/etc!

• Each passcode is validated by some function
• You only have access to the assembly code

• It’s your job to determine what passcodes will
prevent the program from ever calling the
explode_bomb() function

• Each student has a different bomb

• bomb
• The executable bomb program

• bomb.c
• This is the entry point for the bomb program, not

including the phase_* functions
• defuser.txt

• Place your passcodes here once you solve each
phase, separated by newline

• Can be passed as an argument to prevent you from
entering the passcodes manually each time

• run defuser.txt from within GDB

Lab 2 Files

• The bomb uses sscanf, which parses a string
into values

• Example:
int a, b;
sscanf(“123, 456”, “%d, %d”, &a, &b);
• The first argument is parsed according to the

format string
• Specifiers like printf

Lab 2 Notes

• Print out the disassembled phases
• objdump -d bomb > bomb.s
• You can then print out bomb.s
• Mark the printouts up with notes

• Try to work backwards from the “success” case
of each phase

• Remember that some addresses are pointing to
strings located elsewhere in memory

• Print them out in GDB

Lab 2 Tips

Lab 2 Phase 1

