

W UNIVERSITY of WASHINGTON L22: Virtual Memory III CSE351,	Winter 2017
Fetching Data on a Memory Read	
1) Check TLB	
Input: VPN, Output: PPN	
TLB Hit: Fetch translation, return PPN	
TLB Miss: Check page table (in memory)	
Page Table Hit: Load page table entry into TLB	
 Page Fault: Fetch page from disk to memory, update corresponding page table entry, then load entry into TLB 	
2) Check cache	
Input: physical address, <u>Output</u> : data	
Cache Hit: Return data value to processor	
Cache Miss: Fetch data value from memory, store it in cache, return it to processor	
	8

W UNIVERSITY of WASHINGTON	L22: Virtual Memory III CSE351,	Winter 2017
Summary	of Address Translation Symbols	
 ✤ Basic Para ■ N = 2ⁿ ■ M = 2^m ■ P = 2^p 	ameters Number of addresses in virtual address space Number of addresses in physical address space Page size (bytes)	
 Compone VPO VPN TLBI TLBT 	nts of the virtual address (VA) Virtual page offset Virtual page number TLB index TLB tag	
 Compone PPO PPN 	ents of the physical address (PA) Physical page offset (same as VPO) Physical page number	10

W UNIVERSITY of WASHING Simple 1	^{TON}	nor	y Sy	L22: Virtual Memory III Stem: P	age	e Tal	csessi, w	inter 2017
Only shNote:	owin show	g firs ing 2	t 16 hex d	entries (ou igits for PPN	It of .	256 thou	_) gh only 6 bits	
)	VPN	PPN	Valid	, r.T.E. VPN	PPN	Valid		
	0	28	1	8	13	1		
	1	-	0	9	17	1		
	2	33	1	Α	09	1		
	3	02	1	В	-	0		
	4	-	0	С	-	0		
	5	16	1	D	2D	1		
	6	1	0	E	I	0		
	7	-	0	F	0D	1		
								12

W UNIVERSITY (of WASHIN	IGTON			L22:	Virtual Memo	ry III					CSE351, Win	ter 2017
Simple Memory System: TLB													
* 16	ent	ries	total		_	5 4				Why	does t	he	
* 4-v	way	set a	ASSOC	iativ	re → T	Pindov	<u>></u> e+5 2 4, f 1 \	s		TLB i pag	gnore t e offse	t?	
	13	12 11	10 tag	9	8	7 6	5	4	3 2	1	0		
VA:													
		— virt	ual pag	ge num	ber —		, ▶ ∢	– virtua	l page	offset -			
					-				641	łs			
Set	Tag	PPN	Valid	Tag	PPN	Valid	Tag	PPN	Valid	Tag	PPN	Valid	
0	03	-	0	09	0D	1	00	-	0	07	02	1	
1	03	2D	1	02	-	0	04	-	0	0A	-	0	
2	02	-	0	08	-	0	06	-	0	03	-	0	
3	07	-	0	03	0D	1	0A	34	1	02	-	0	
												-	13

W UNIVE	W UNIVERSITY of WASHINGTON L22: Virtual Memory III CSE351, Winter 2017												
S *	Simple Memory System: Cache Sincidence that the PPN is the same width as the cache Tag												
*	 Physically addressed 16 sole 												
	$\leftarrow \qquad \qquad$												
	<u>11 10 9 8 7 6 5 4 3 2 1 0</u>												
	P	'A:								D)	
		•	– phys	ical pa	ge nun	iber -	*	physic	al page	e offset	\rightarrow		
Index	Tag	Valid	BO	B1	B2	B3	Index	Tag	Valid	BO	B1	B2	B3
_0	19	1	99	.11	23	.11	8	24	1	3A	00	51	89
1	15	0	-	-	-	-	9	2D	0	-	-	-	- ^F
2	1B	1	00	02	04	08	Α	2D	1	93	15	DA	3B
3	36	0	-	-	-	-	В	OB	0	-	-	-	-
4	32	1	43	6D	8F	09	С	12	0	-	-	-	-
5	0D	1	36	72	FO	1D	D	16	1	04	96	34	15
6	31	0	-	-	-	-	E	13	1	83	77	1B	D3
7	16	1	11	C2	DF	03	F	14	0	-	-	-	-
													14

W UNIV	(ERSIT	Y of <u>W</u>	ASHING	TON	_	_	_	L	.22: Virt	ual Memor	y III	_	_	_	_	_		CSE351, V	Winter 2017
C	Current State of Memory System																		
тир	Page table (partial):																		
ILD														VPN	PPN	V	VPN	PPN	V
Set	Tag	PPN	IV	Tag	PPN	V	Tag	PPN	V	Tag	PPN	V		0	28	1	8	13	1
0	03	-	0	09	0D	1	00	-	0	07	02	1		1	-	0	9	17	1
1	03	2D	1	02	-	0	04	-	0	0A	-	0		2	33	1	Α	09	1
2	02	-	0	08	-	0	06	-	0	03	-	0		3	02	1	В	-	0
~ 3	07	- 1	0	03	60	(L)	0A	34	1	02	-	0	1	4	-	0	C	-	0
										5	20	1							
														7	_	0	-	-	1
Car	•he•			3										1		0	F	00	T
Indox			V		<u>}</u>	D1	DI		D 2	Indo		Taa	V		PA	D1	D7	P	2
index	1		1			DI 11	22	_	11	nnue.		24	1			00	D2		0
0		9	1	95	,	11	23	-	11	•		24	1		БА	00	51	0	9
1	1	5	0	-			-	_	-	9		20	0		-	-	-		-
2	1	В	1	00)	02	04		08	Α		2D	1		93	15	DA	3	В
3	3	6	0			-	-		-	В		OB	0		-	-	-	-	-
4	3	2	1	43	3	6D	8F		09	С		12	0		-	-	-	-	-
5	O	D		36	5)	72	FO		1D	D		16	1		04	96	34	1	5
6	3	1	0	-		-	-		-	E		13	1		83	77	1B	D	3
7	1	6	1	11	L	C2	DF		03	F	Г	14	0		-	-	-	-	-
i	-						-												15

W UNIVERSITY (of WASE	INGTO	N			L	22: Virtua	Memory	п					(CSE351, Winter 2017
Mei « Vi	Memory Request Example #2 Virtual Address: 0x038F											is just that the ime width che Tag			
	•		— TL	вт —			← TL	.BI →							
	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	0	0	0	0	1	1	1	0	0	0	1	1	1	1	
				— VF	PN —				•		— VF	o			
v _{PN} ♦ Ph	<pre>VPN TLBT TLBI TLB Hit? Page Fault? PPN</pre>														
		[11	10	C 9 PF	r — 8 PN —	7	6	5	C 	1 3 PP	2 2 20 -		$\begin{array}{c} 0 \longrightarrow \\ 0 \end{array}$	
СТ			CI _		C	.0		Ca	che H	it?		Data	(byte)	17

W UNIVERSITY	of WASI	HINGTO.	N			L	.22: Virtua	l Memory	Ш						CSE351, Winter 2017
Me ı ∗ Vi	Memory Request Example #3 Virtual Address: 0x0020											Note: It is just coincidence that the PPN is the same width as the cache Tag			
	•		— TL	вт —			· ← Tl	.BI →							
	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	0	0	0	0	0	0	0	0	1	0	0	0	0	0	
				— vi	PN —				•		— vi	ю—			
vpn	VPN TLBT TLBI TLB Hit? Page Fault? PPN														
			•		— c	т —			•	c	I ——		← C	0	
			11	10	9	8	7	6	5	4	3	2	1	0	
			•		— PI	PN —		,	•		— PF	- o			
CT			CI _		(Ca	che H	lit?		Data	(byte)	18

🚺 UNIVERSITY of WASHINGTON L22: Virtual Memory III CS	E351, Winter 2017
Manager Cychange M/ha agentyalawhat?	
wemory System – who controls what?	
 Memory Caches (L1/L2/L3) 	
Controlled by hardware	
Programmer cannot control it	
Programmer can write code to take advantage of it	
 Virtual Memory 	
Controlled by OS and hardware	
Programmer cannot control mapping to physical memory	/
Programmer can control sharing and some protection	
 via OS functions (not in CSE 351) 	
	22

V UNIVERSITY	e of WASHINGTON L22: Virtual Memory III CSE3	51, Winter 2017
Qu	ick Review Answers	
* W	hat do Page Tables map?	
	$VPN \rightarrow PPN$ or disk address	
* W	here are Page Tables located?	
1.1	In physical memory	
♦ Ho	ow many Page Tables are there?	
	One per process	
 Ca 	in your program tell if a page fault has occurred?	
	Nope, but it has to wait a long time	
* W	hat is thrashing?	
	Constantly paging out and paging in	
♦ Tr	ue / False: Virtual Addresses that are contiguous will always be	
со	ntiguous in physical memory	
	Could fall across a page boundary	
♦ TL	B stands for <u>Translation Lookaside Buffer</u> and stores <u>page table entries</u>	<u>s</u>
		24

W UNIVERSITY of WASHIN	IGTON L22: Virtual Memory III	CSE351, Winter 2017
Practice	e VM Question	
<pre> One pr mat[] #de fo: </pre>	<pre>rocess uses a page-aligned square matrix of 32-bit integers in the code shown belo efine MAT_SIZE = 2048=2" r(int i=0; i<mat_size; i++)="" mat[i*(mat_size+1)]="i;</pre"></mat_size;></pre>	ow:
b) What succe	is the largest stride (in bytes) between ssive memory accesses (in the VA space)? 0 2049 ints = 2049*4 B = stride	
2	2049 2 2*2049	diagonal trix 32

18

UNIVERSITY of WASHINGTON L22: Virtual Memory III CSE351, W	Vinter 2017
Allocating Memory in C	
<pre>* Need to #include <stdlib.h></stdlib.h></pre>	
void* malloc(size_t size)	
 Allocates a continuous block of size bytes of uninitialized memory Returns a pointer to the beginning of the allocated block; NULL indicates failed request Typically aligned to an 8-byte (x86) or 16-byte (x86-64) boundary Returns NULL if allocation failed (also sets errno) or size==0 Different blocks not necessarily adjacent 	S
 Related functions: 	
 void* calloc(size_t nitems, size_t size) "Zeros out" allocated block 	
 void* realloc(void* ptr, size_t size) Changes the size of a previously allocated block (if possible) void* sbrk(intptr_t increment) Used internally by allocaters to grow or chrisk the beap 	
Osed internally by allocators to grow or shrink the heap	40

emory Allocation Example in C			
<pre>roid foo(int n, int m) {</pre>			
int i, *p;			
<pre>p = (int*) malloc(n*sizeof(int)); if (p == NULL) { perror("malloc"); i(2)</pre>	/* allocate block of n ints */ /* check for allocation error */		
exit(0);			
} for (i-0, i(n, i))	(+ initialize intervent + (
for (1=0; 1 <n; 1++)<="" td=""><td>/ ^ Initialize int array ^/</td></n;>	/ ^ Initialize int array ^/		
$p[\pm] = \pm,$ (* add s	nace for mints to end of n block */		
n = (int*) realloc(n (n+m)*sizeof	(int)):		
<pre>if (p == NULL) { perror("realloc"); exit(0);</pre>	/* check for allocation error */		
}			
<pre>for (i=n; i < n+m; i++) p[i] = i;</pre>	/* initialize new spaces */		
<pre>for (i=0; i<n+m; i++)="" p[i]);<="" pre="" printf("%d\n",=""></n+m;></pre>	/* print new array */		
free(p);	/* free p */		

W UNIVERSITY of WASHINGTON	L22: Virtual Memory III	CSE351, Winter 2017
Allocation Ex	xample	
<pre>p1 = malloc(16)</pre>		
p2 = malloc(20)		
p3 = malloc(24)		
free(p2)		
p4 = malloc(8)		
		44

Why is this hard? And what happens to throughput?

47

