
11/23/2016

1

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L22: Virtual Memory III

Virtual	Memory	III
CSE	351	Winter	2017

https://xkcd.com/720/

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L22: Virtual Memory III

Address	Translation:		Page	Hit

2

1) Processor	sends	virtual	address	to	MMU	(memory	management	unit)

2-3)		MMU	fetches	PTE	from	page	table	in	cache/memory
(Uses	PTBR	to	find	beginning	of	page	table	for	current	process)

4) MMU	sends	physical	address to	cache/memory	requesting	data

5) Cache/memory	sends	data	to	processor

MMU Cache/
MemoryPA

Data

CPU VA

CPU	Chip PTEA

PTE
1

2

3

4

5

VA	=	Virtual	Address PTEA	=	Page	Table	Entry	Address PTE=	Page	Table	Entry	
PA	=	Physical	Address Data	=	Contents	of	memory	stored	at	VA	originally	requested	by	CPU	

11/23/2016

2

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L22: Virtual Memory III

Address	Translation:		Page	Fault

3

1) Processor	sends	virtual	address	to	MMU	
2-3) MMU	fetches	PTE	from	page	table	in	cache/memory
4) Valid	bit	is	zero,	so	MMU	triggers	page	fault	exception
5) Handler	identifies	victim	(and,	if	dirty,	pages	it	out	to	disk)
6) Handler	pages	in	new	page	and	updates	PTE	in	memory
7) Handler	returns	to	original	process,	restarting	faulting	instruction

MMU Cache/
Memory

CPU VA

CPU	Chip PTEA

PTE
1

2

3

4

5

Disk

Page	fault	handler

Victim	page

New	page

Exception

6

7

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L22: Virtual Memory III

Hmm…	Translation	Sounds	Slow

v The	MMU	accesses	memory	twice:	once	to	get	the	
PTE	for	translation,	and	then	again	for	the	actual	
memory	request
§ The	PTEs	may be	cached	in	L1	like	any	other	memory	word

• But	they	may	be	evicted	by	other	data	references

• And	a	hit	in	the	L1	cache	still	requires	1-3	cycles

v What	can	we	do	to	make	this	faster?
§ Solution:		add	another	cache!		🎉

4

11/23/2016

3

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L22: Virtual Memory III

Speeding	up	Translation	with	a	TLB

v Translation	Lookaside	Buffer (TLB):
§ Small	hardware	cache	in	MMU
§ Maps	virtual	page	numbers	to	physical	page	numbers
§ Contains	complete	page	table	entries for	small	number	of	
pages
• Modern	Intel	processors	have	128	or	256	entries	in	TLB

§ Much	faster	than	a	page	table	lookup	in	cache/memory

5

TLB

PTEVPN →

PTEVPN →

PTEVPN →

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L22: Virtual Memory III

TLB	Hit

v A	TLB	hit	eliminates	a	memory	access!

6

MMU Cache/
Memory

PA

Data

CPU VA

CPU Chip

PTE

1

2

4

5

TLB

VPN 3

TLB
PTEVPN →

PTEVPN →

PTEVPN →

11/23/2016

4

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L22: Virtual Memory III

TLB	Miss

v A	TLB	miss	incurs	an	additional	memory	access	(the	PTE)
§ Fortunately,	TLB	misses	are	rare

7

MMU Cache/
MemoryPA

Data

CPU VA

CPU Chip

PTE

1

2

5

6

TLB

VPN

4

PTEA
3

TLB
PTEVPN →

PTEVPN →

PTEVPN →

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L22: Virtual Memory III

Fetching	Data	on	a	Memory	Read

1) Check	TLB
§ Input:		VPN,		Output:		PPN
§ TLB	Hit: Fetch	translation,	return	PPN
§ TLB	Miss: Check	page	table	(in	memory)

• Page	Table	Hit: Load	page	table	entry	into	TLB
• Page	Fault: Fetch	page	from	disk	to	memory,	update	corresponding	
page	table	entry,	then	load	entry	into	TLB

2) Check	cache
§ Input:		physical	address,		Output:		data
§ Cache	Hit: Return	data	value	to	processor
§ Cache	Miss: Fetch	data	value	from	memory,	store	it	in	
cache,	return	it	to	processor

8

11/23/2016

5

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L22: Virtual Memory III

Address	Translation
Virtual	Address

TLB
Lookup

Page	Table
“Walk”

Update	
TLB

Page	Fault
(OS	loads	page)

Protection
Check

Physical
Address

TLB	Miss TLB	Hit

Page	not
in	Mem

Access
Denied

Access	
Permitted

Protection
Fault

SIGSEGV

Page	
in	Mem

Check	cacheFind	in	Disk Find	in	Mem

9

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L22: Virtual Memory III

Summary	of	Address	Translation	Symbols

v Basic	Parameters
§ N = 2$ Number	of	addresses	in	virtual	address	space
§ M = 2& Number	of	addresses	in	physical	address	space
§ P = 2(Page	size	(bytes)

v Components	of	the	virtual	address	(VA)
§ VPO Virtual	page	offset	
§ VPN Virtual	page	number
§ TLBI TLB	index
§ TLBT TLB	tag

v Components	of	the	physical	address	(PA)
§ PPO Physical	page	offset	(same	as	VPO)
§ PPN Physical	page	number

10

11/23/2016

6

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L22: Virtual Memory III

Simple	Memory	System	Example	(small)

v Addressing
§ 14-bit	virtual	addresses
§ 12-bit	physical	address
§ Page	size	=	64	bytes

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN
Virtual	Page	Number Virtual	Page	Offset

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN
Physical	Page	Number Physical	Page	Offset

11

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L22: Virtual Memory III

Simple	Memory	System:		Page	Table

v Only	showing	first	16	entries	(out	of	_____)
§ Note:		showing	2	hex	digits	for	PPN	even	though	only	6	bits

12

VPN PPN Valid
0 28 1
1 – 0
2 33 1
3 02 1
4 – 0
5 16 1
6 – 0
7 – 0

VPN PPN Valid
8 13 1
9 17 1
A 09 1
B – 0
C – 0
D 2D 1
E – 0
F 0D 1

11/23/2016

7

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L22: Virtual Memory III

Simple	Memory	System:		TLB

v 16	entries	total
v 4-way	set	associative

13

13 12 11 10 9 8 7 6 5 4 3 2 1 0

virtual	page	offsetvirtual	page	number

TLB	indexTLB	tag

0–021340A10D030–073
0–030–060–080–022
0–0A0–040–0212D031
102070–0010D090–030

ValidPPNTagValidPPNTagValidPPNTagValidPPNTagSet

Why	does	the	
TLB	ignore	the	
page	offset?

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L22: Virtual Memory III

Simple	Memory	System:		Cache

v Direct-mapped	with	K =	4	B,	C/K =	16
v Physically	addressed

14

11 10 9 8 7 6 5 4 3 2 1 0

physical	page	offsetphysical	page	number

cache	offsetcache	indexcache	tag

Note: It	is	just	
coincidence	that	the	
PPN	is	the	same	width	

as	the	cache	Tag

Index Tag Valid B0 B1 B2 B3
0 19 1 99 11 23 11
1 15 0 – – – –
2 1B 1 00 02 04 08
3 36 0 – – – –
4 32 1 43 6D 8F 09
5 0D 1 36 72 F0 1D
6 31 0 – – – –
7 16 1 11 C2 DF 03

Index Tag Valid B0 B1 B2 B3
8 24 1 3A 00 51 89
9 2D 0 – – – –
A 2D 1 93 15 DA 3B
B 0B 0 – – – –
C 12 0 – – – –
D 16 1 04 96 34 15
E 13 1 83 77 1B D3
F 14 0 – – – –

11/23/2016

8

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L22: Virtual Memory III

Current	State	of	Memory	System

15

Cache:

TLB:
Page	table	(partial):

Index Tag V B0 B1 B2 B3
0 19 1 99 11 23 11
1 15 0 – – – –
2 1B 1 00 02 04 08
3 36 0 – – – –
4 32 1 43 6D 8F 09
5 0D 1 36 72 F0 1D
6 31 0 – – – –
7 16 1 11 C2 DF 03

Index Tag V B0 B1 B2 B3
8 24 1 3A 00 51 89
9 2D 0 – – – –
A 2D 1 93 15 DA 3B
B 0B 0 – – – –
C 12 0 – – – –
D 16 1 04 96 34 15
E 13 1 83 77 1B D3
F 14 0 – – – –

Set Tag PPN V Tag PPN V Tag PPN V Tag PPN V
0 03 – 0 09 0D 1 00 – 0 07 02 1
1 03 2D 1 02 – 0 04 – 0 0A – 0
2 02 – 0 08 – 0 06 – 0 03 – 0
3 07 – 0 03 0D 1 0A 34 1 02 – 0

VPN PPN V
0 28 1
1 – 0
2 33 1
3 02 1
4 – 0
5 16 1
6 – 0
7 – 0

VPN PPN V
8 13 1
9 17 1
A 09 1
B – 0
C – 0
D 2D 1
E – 0
F 0D 1

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L22: Virtual Memory III

Memory	Request	Example	#1

v Virtual	Address:		0x03D4

v Physical	Address:		

TLBITLBT

0
13

0
12

0
11

0
10

1
9

1
8

1
7

1
6

0
5

1
4

0
3

1
2

0
1

0
0

VPOVPN

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

VPN	______ TLBT	_____ TLBI	_____ TLB	Hit?	___ Page	Fault?	___ PPN _____

CT	______ CI	_____ CO	_____ Cache	Hit?	___ Data	(byte)	_______

Note: It	is	just	
coincidence	that	the	
PPN	is	the	same	width	

as	the	cache	Tag

16

11/23/2016

9

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L22: Virtual Memory III

Memory	Request	Example	#2

v Virtual	Address:		0x038F

v Physical	Address:		

TLBITLBT

0
13

0
12

0
11

0
10

1
9

1
8

1
7

0
6

0
5

0
4

1
3

1
2

1
1

1
0

VPOVPN

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

VPN	______ TLBT	_____ TLBI	_____ TLB	Hit?	___ Page	Fault?	___ PPN _____

CT	______ CI	_____ CO	_____ Cache	Hit?	___ Data	(byte)	_______

Note: It	is	just	
coincidence	that	the	
PPN	is	the	same	width	

as	the	cache	Tag

17

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L22: Virtual Memory III

Memory	Request	Example	#3

v Virtual	Address:		0x0020

v Physical	Address:		

TLBITLBT

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

1
5

0
4

0
3

0
2

0
1

0
0

VPOVPN

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

VPN	______ TLBT	_____ TLBI	_____ TLB	Hit?	___ Page	Fault?	___ PPN _____

CT	______ CI	_____ CO	_____ Cache	Hit?	___ Data	(byte)	_______

Note: It	is	just	
coincidence	that	the	
PPN	is	the	same	width	

as	the	cache	Tag

18

11/23/2016

10

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L22: Virtual Memory III

Memory	Request	Example	#4

v Virtual	Address:		0x036B

v Physical	Address:		

TLBITLBT

0
13

0
12

0
11

0
10

1
9

1
8

0
7

1
6

1
5

0
4

1
3

0
2

1
1

1
0

VPOVPN

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

VPN	______ TLBT	_____ TLBI	_____ TLB	Hit?	___ Page	Fault?	___ PPN _____

CT	______ CI	_____ CO	_____ Cache	Hit?	___ Data	(byte)	_______

Note: It	is	just	
coincidence	that	the	
PPN	is	the	same	width	

as	the	cache	Tag

19

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L22: Virtual Memory III

Virtual	Memory	Summary

v Programmer’s	view	of	virtual	memory
§ Each	process	has	its	own	private	linear	address	space
§ Cannot	be	corrupted	by	other	processes

v System	view	of	virtual	memory
§ Uses	memory	efficiently	by	caching	virtual	memory	pages

• Efficient	only	because	of	locality

§ Simplifies	memory	management	and	sharing
§ Simplifies	protection	by	providing	permissions	checking

20

11/23/2016

11

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L22: Virtual Memory III

Memory	System	Summary
v Memory	Caches	(L1/L2/L3)

§ Purely	a	speed-up	technique
§ Behavior	invisible	to	application	programmer	and	(mostly)	OS
§ Implemented	totally	in	hardware

v Virtual	Memory
§ Supports	many	OS-related	functions

• Process	creation,	task	switching,	protection
§ Operating	System	(software)

• Allocates/shares	physical	memory	among	processes
• Maintains	high-level	tables	tracking	memory	type,	source,	sharing
• Handles	exceptions,	fills	in	hardware-defined	mapping	tables

§ Hardware
• Translates	virtual	addresses	via	mapping	tables,	enforcing	permissions
• Accelerates	mapping	via	translation	cache	(TLB)

21

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L22: Virtual Memory III

Memory	System	– Who	controls	what?

v Memory	Caches	(L1/L2/L3)
§ Controlled	by	hardware
§ Programmer	cannot	control	it
§ Programmer	can write	code	to	take	advantage	of	it

v Virtual	Memory
§ Controlled	by	OS	and	hardware
§ Programmer	cannot	control	mapping	to	physical	memory
§ Programmer	can	control	sharing	and	some	protection

• via	OS	functions	(not	in	CSE	351)

22

11/23/2016

12

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L22: Virtual Memory III

Quick	Review
v What	do	Page	Tables	map?

v Where	are	Page	Tables	located?

v How	many	Page	Tables	are	there?

v Can	your	program	tell	if	a	page	fault	has	occurred?

v What	is	thrashing?

v True	/	False:		Virtual	Addresses	that	are	contiguous	will	always	be	
contiguous	in	physical	memory

v TLB	stands	for	_______________________	and	stores	_______________

23

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L22: Virtual Memory III

Quick	Review	Answers
v What	do	Page	Tables	map?

§ VPN	→ PPN	or	disk	address
v Where	are	Page	Tables	located?

§ In	physical	memory
v How	many	Page	Tables	are	there?

§ One	per	process
v Can	your	program	tell	if	a	page	fault	has	occurred?

§ Nope,	but	it	has	to	wait	a	long	time
v What	is	thrashing?

§ Constantly	paging	out	and	paging	in
v True	/	False:		Virtual	Addresses	that	are	contiguous	will	always	be	

contiguous	in	physical	memory
§ Could	fall	across	a	page	boundary

v TLB	stands	for	Translation	Lookaside	Buffer and	stores	page	table	entries

24

11/23/2016

13

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L22: Virtual Memory III

Review:		Address	Translation

v VM	is	complicated,	but	also	elegant	and	effective
§ Level	of	indirection	to	provide	isolated	memory	&	caching
§ TLB	as	a	cache	of	page	tables
avoids	two	trips	to	memory	
for	every	memory	access

Virtual	Address

TLB
Lookup

Page	Table
“Walk”

Update	
TLB

Page	Fault
(OS	loads	page)

Protection
Check

Physical
Address

TLB	Miss TLB	Hit

Page	not
in	Mem

Access
Denied

Access	
Permitted

Protection
Fault

SIGSEGV

Page	
in	Mem

Check	cacheFind	in	Disk Find	in	Mem
25

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L22: Virtual Memory III

Memory	Overview:	Putting	it	all	together

26

Disk

Main	memory
(DRAM)

CacheCPU

Page

Page
Line

Line

Word

v movl 0x8043ab, %rdi

TLB

MMU

11/23/2016

14

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L22: Virtual Memory III

Context	Switching	Revisited

v What	needs	to	happen	when	the	CPU	switches	
processes?
§ Registers:

• Save	state	of	old	process,	load	state	of	new	process
• Including	the	Page	Table	Base	Register	(PTBR)

§ Memory:
• Nothing	to	do!		Pages	for	processes	already	exist	in	memory/disk	and	
protected	from	each	other

§ TLB:
• Invalidate all	entries	in	TLB	– mapping	is	for	old	process’	VAs	

§ Cache:
• Can	leave	alone	because	storing	based	on	PAs	– good	for	shared	data

27

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L22: Virtual Memory III

Page	Table	Reality

v Just	one	issue…	the	numbers	don’t	work	out	for	the	
story	so	far!

v The	problem	is	the	page	table	for	each	process:
§ Suppose	64-bit	VAs,	8	KiB	pages,	8	GiB physical	memory
§ How	many	page	table	entries	is	that?	

§ About	how	long	is	each	PTE?

§ Moral: Cannot	use	this	naïve	implementation	of	the	
virtual→physical-page mapping	– it’s	way too	big

28

11/23/2016

15

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L22: Virtual Memory III

A	Solution:		Multi-level	Page	Tables

29

Page	table	
base	register

(PTBR)

VPN	1
0p-1n-1

VPOVPN	2 ... VPN	k

PPN

0p-1m-1
PPOPPN

Virtual	Address

Physical	Address

... ...

Level	1
page	table

Level	2
page	table

Level	k
page	table

TLB

PTEVPN →

PTEVPN →

PTEVPN →

This	is	called	a	page	walk

This	is	extra	
(non-testable)	

material

Why	does	this	work?

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L22: Virtual Memory III

Multi-level	Page	Tables
v A	tree	of	depth	𝑘 where	each	node	at	depth	𝑖 has	up	to	2/

children	if	part	𝑖 of	the	VPN	has	𝑗 bits
v Hardware	for	multi-level	page	tables	inherently	more	

complicated
§ But	it’s	a	necessary	complexity	– 1-level	does	not	fit

v Why	it	works:	Most	subtrees	are	not	used	at	all,	so	they	are	
never	created	and	definitely	aren’t	in	physical	memory
§ Parts	created	can	be	evicted	from	cache/memory	when	not	being	used
§ Each	node	can	have	a	size	of	~1-100KB

v But	now	for	a	𝑘-level	page	table,	a	TLB	miss	requires	𝑘 + 1
cache/memory	accesses
§ Fine	so	long	as	TLB	misses	are	rare	– motivates	larger	TLBs

30

This	is	extra	
(non-testable)	

material

11/23/2016

16

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L22: Virtual Memory III

Practice	VM	Question

v Our	system	has	the	following	properties
§ 1	MiB of	physical	address	space
§ 4	GiB of	virtual	address	space
§ 32	KiB	page	size
§ 4-entry	fully	associative	TLB	with	LRU	replacement

a) Fill	in	the	following	blanks:

________ Entries	in	page table ________ Minimum	bit-width	of	
PTBR

________ TLBT	bits ________ Max	#	of	valid	entries	
in	a	page table

31

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L22: Virtual Memory III

Practice	VM	Question

v One	process	uses	a	page-aligned	squarematrix	
mat[] of	32-bit	integers	in	the	code	shown	below:

#define MAT_SIZE = 2048
for(int i=0; i<MAT_SIZE; i++)

mat[i*(MAT_SIZE+1)] = i;

b) What	is	the	largest	stride	(in	bytes)	between	
successive	memory	accesses	(in	the	VA	space)?

32

11/23/2016

17

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L22: Virtual Memory III

Practice	VM	Question

v One	process	uses	a	page-aligned	squarematrix	
mat[] of	32-bit	integers	in	the	code	shown	below:

#define MAT_SIZE = 2048
for(int i=0; i<MAT_SIZE; i++)

mat[i*(MAT_SIZE+1)] = i;

c) What	are	the	following	hit	rates	for	the	first	
execution	of	the	for	loop?

________ TLB	Hit	Rate ________ Page	Table	Hit	Rate

33

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L22: Virtual Memory III

Roadmap

34

car *c = malloc(sizeof(car));
c->miles = 100;
c->gals = 17;
float mpg = get_mpg(c);
free(c);

Car c = new Car();
c.setMiles(100);
c.setGals(17);
float mpg =

c.getMPG();

get_mpg:
pushq %rbp
movq %rsp, %rbp
...
popq %rbp
ret

Java:C:

Assembly	
language:

Machine	
code:

0111010000011000
100011010000010000000010
1000100111000010
110000011111101000011111

Computer	
system:

OS:

Memory	&	data
Integers	&	floats
Machine	code	&	C
x86	assembly
Procedures	&	stacks
Arrays	&	structs
Memory	&	caches
Processes
Virtual	memory
Memory	allocation
Java	vs.	C

11/23/2016

18

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L22: Virtual Memory III

Multiple	Ways	to	Store	Program	Data
v Static	global	data

§ Fixed	size	at	compile-time
§ Entire	lifetime	of	the	program	

(loaded	from	executable)
§ Portion	is	read-only	

(e.g.	string	literals)

v Stack-allocated	data
§ Local/temporary	variables

• Can be	dynamically	sized	(in	some	versions	of	C)

§ Known	lifetime	(deallocated	on	return)

v Dynamic	(heap)	data
§ Size	known	only	at	runtime	(i.e.	based	on	user-input)
§ Lifetime	known	only	at	runtime	(long-lived	data	structures)

int array[1024];

void foo(int n) {
int tmp;
int local_array[n];

int* dyn =
(int*)malloc(n*sizeof(int));

}

35

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L22: Virtual Memory III

Memory	Allocation

v Dynamic	memory	allocation
§ Introduction	and	goals
§ Allocation	and	deallocation	(free)
§ Fragmentation

v Explicit	allocation	implementation
§ Implicit	free	lists
§ Explicit	free	lists	(Lab	5)
§ Segregated	free	lists

v Implicit	deallocation:		garbage	collection
v Common	memory-related	bugs	in	C

36

11/23/2016

19

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L22: Virtual Memory III

Dynamic	Memory	Allocation

v Programmers	use	dynamic	memory	allocators	to	
acquire	virtual	memory	at	run	time	
§ For	data	structures	whose	size	
(or	lifetime)	is	known	only	at	runtime

§ Manage	the	heap	of	a	process’	
virtual	memory:

v Types	of	allocators
§ Explicit allocator:		programmer	allocates	and	frees	space	

• Example:		malloc and	free in	C

§ Implicit allocator: programmer	only	allocates	space	(no	free)
• Example:		garbage	collection	in	Java,	Caml,	and	Lisp

37

Program	text	(.text)
Initialized	data	(.data)

User	stack

0

Heap	(via	malloc)

Uninitialized	data	(.bss)

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L22: Virtual Memory III

Dynamic	Memory	Allocation

v Allocator	organizes	heap	as	a	collection	of	variable-
sized	blocks,	which	are	either	allocated or	free
§ Allocator	requests	pages	in	the	heap	region;	virtual	memory	
hardware	and	OS	kernel	allocate	these	pages	to	the	process

§ Application	objects	are	typically	smaller	than	pages,	so	the	
allocator	manages	blocks	within pages		
• (Larger	objects	handled	too;	
ignored	here)

38

Top	of	heap
(brk ptr)

Program	text	(.text)
Initialized	data	(.data)

User	stack

0

Heap	(via	malloc)

Uninitialized	data	(.bss)

11/23/2016

20

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L22: Virtual Memory III

Allocating	Memory	in	C
v Need	to	#include <stdlib.h>
v void* malloc(size_t size)

§ Allocates	a	continuous	block	of	size bytes	of	uninitialized	memory
§ Returns	a	pointer	to	the	beginning	of	the	allocated	block;	NULL	indicates	

failed	request	
• Typically	aligned	to	an	8-byte	(x86)	or	16-byte	(x86-64)	boundary
• Returns	NULL if	allocation	failed	(also	sets	errno)	or	size==0

§ Different	blocks	not	necessarily	adjacent

v Good	practices:
§ ptr = (int*) malloc(n*sizeof(int));

• sizeofmakes	code	more	portable
• void* is	implicitly	cast	into	any	pointer	type;	explicit	typecast	will	help	you	
catch	coding	errors	when	pointer	types	don’t	match

39

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L22: Virtual Memory III

Allocating	Memory	in	C
v Need	to	#include <stdlib.h>
v void* malloc(size_t size)

§ Allocates	a	continuous	block	of	size bytes	of	uninitialized	memory
§ Returns	a	pointer	to	the	beginning	of	the	allocated	block;	NULL	indicates	

failed	request	
• Typically	aligned	to	an	8-byte	(x86)	or	16-byte	(x86-64)	boundary
• Returns	NULL if	allocation	failed	(also	sets	errno)	or	size==0

§ Different	blocks	not	necessarily	adjacent

v Related	functions:
§ void* calloc(size_t nitems, size_t size)

• “Zeros	out”	allocated	block
§ void* realloc(void* ptr, size_t size)

• Changes	the	size	of	a	previously	allocated	block	(if	possible)
§ void* sbrk(intptr_t increment)

• Used	internally	by	allocators	to	grow	or	shrink	the	heap
40

11/23/2016

21

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L22: Virtual Memory III

Freeing	Memory	in	C
v Need	to	#include <stdlib.h>
v void free(void* p)

§ Releases	whole	block	pointed	to	by	p to	the	pool	of	available	memory
§ Pointer	pmust	be	the	address	originally returned	by	m/c/realloc

(i.e.	beginning	of	the	block),	otherwise	throws	system	exception
§ Don’t	call	free on	a	block	that	has	already	been	released	or	on	NULL

41

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L22: Virtual Memory III

Memory	Allocation	Example	in	C

42

void foo(int n, int m) {
int i, *p;
p = (int*) malloc(n*sizeof(int)); /* allocate	block	of	n	ints */
if (p == NULL) { /* check	for	allocation	error */

perror("malloc");
exit(0);

}
for (i=0; i<n; i++) /* initialize	int array */

p[i] = i;
/* add	space	for	m	ints	to	end	of	p	block */

p = (int*) realloc(p,(n+m)*sizeof(int));
if (p == NULL) { /* check	for	allocation	error */

perror("realloc");
exit(0);

}
for (i=n; i < n+m; i++) /* initialize	new	spaces */

p[i] = i;
for (i=0; i<n+m; i++) /* print	new	array */

printf("%d\n", p[i]);
free(p); /* free	p	*/

}

11/23/2016

22

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L22: Virtual Memory III

Notation	Node	(these	slides,	book,	videos)

v Memory	is	drawn	divided	into	words
§ Each	word can	hold	an	int (32	bits/4	bytes)
§ Allocations	will	be	in	sizes	that	are	a	multiple	of	words,	
i.e.	multiples	of	4	bytes

§ In	pictures	in	slides,	book,	videos	:	

43

Allocated	block
(4	words)

Free	block
(3	words) Free	word

Allocated	word

=	one	word,		4	bytes

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L22: Virtual Memory III

Allocation	Example

44

p1 = malloc(16)

p2 = malloc(20)

p3 = malloc(24)

free(p2)

p4 = malloc(8)

=	4-byte	word

11/23/2016

23

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L22: Virtual Memory III

Constraints (interface/contract)
v Applications

§ Can	issue	arbitrary	sequence	of	malloc and	free requests
§ Must	never	access	memory	not	currently	allocated	
§ Must	never	free	memory	not	currently	allocated

• Also	must	only	use	free with	previously	malloc’ed blocks	(not,	e.g.,	stack	
data)

v Allocators
§ Can’t	control	number	or	size	of	allocated	blocks
§ Must	respond	immediately	to	malloc (i.e.	can’t	reorder	or	buffer)
§ Must	allocate	blocks	from	free	memory	(i.e.	blocks	can’t	overlap	–Why	not?)

§ Must	align	blocks	so	they	satisfy	all	alignment	requirements
§ Can’t	move	the	allocated	blocks	(i.e.	compaction/defragmentation	is	not	

allowed	–Why	not?)

45

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L22: Virtual Memory III

Performance	Goals

v Goals: Given	some	sequence	of	malloc and	free
requests	𝑅4, 𝑅6, … , 𝑅8, … , 𝑅9:6,	maximize	throughput
and	peak	memory	utilization
§ These	goals	are	often	conflicting

1) Throughput
§ Number	of	completed	requests	per	unit	time
§ Example:

• If	5,000		malloc calls	and	5,000	free calls	completed	in	10	seconds,	
then	throughput	is	1,000	operations/second

46

11/23/2016

24

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L22: Virtual Memory III

Performance	Goals

v Definition: Aggregate	payload	𝑃8
§ malloc(p) results	in	a	block	with	a	payload of	p bytes
§ After	request	𝑅8 has	completed,	the	aggregate	payload	𝑃8
is	the	sum	of	currently	allocated	payloads

v Definition: Current	heap	size	𝐻8
§ Assume	𝐻8 is	monotonically	non-decreasing

• Allocator	can	increase	size	of	heap	using	sbrk

2) Peak	Memory	Utilization
§ Defined	as	𝑈8 = (max

BC8
𝑃B)/𝐻8 after	𝑘+1	requests

§ Goal:	maximize	utilization	for	a	sequence	of	requests
§ Why	is	this	hard?		And	what	happens	to	throughput?

47

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L22: Virtual Memory III

Fragmentation

v Poor	memory	utilization	is	caused	by	fragmentation
§ Sections	of	memory	are	not	used	to	store	anything	useful,	
but	cannot	satisfy	allocation	requests

§ Two	types:		internal and	external

v Recall: Fragmentation	in	structs
§ Internal	fragmentation	was	wasted	space	inside of	the	struct
(between	fields)	due	to	alignment

§ External	fragmentation	was	wasted	space	between struct
instances	(e.g.	in	an	array)	due	to	alignment

v Now	referring	to	wasted	space	in	the	heap	inside or	
between allocated	blocks

48

11/23/2016

25

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L22: Virtual Memory III

Internal	Fragmentation

v For	a	given	block,	internal	fragmentation occurs	if	
payload	is	smaller	than	the	block

v Causes:
§ Padding	for	alignment	purposes
§ Overhead	of	maintaining	heap	data	structures	(inside	block,	
outside	payload)

§ Explicit	policy	decisions	(e.g.,	to	return	a	big	block	to	satisfy	
a	small	request)

v Easy	to	measure	because	only	depends	on	past	
requests

payload Internal	
fragmentation

block

Internal	
fragmentation

49

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L22: Virtual Memory III

External	Fragmentation
v For	the	heap,	external	fragmentation occurs	when	

allocation/free	pattern	leaves	“holes”	between	blocks
§ That	is,	the	aggregate	payload	is	non-continuous
§ Can	cause	situations	where	there	is	enough	aggregate	heap	memory	to	

satisfy	request,	but	no	single	free	block	is	large	enough

v Don’t	know	what	future	requests	will	be
§ Difficult	to	impossible	to	know	if	past	placements	will	become	

problematic
50

p1 = malloc(16)

p2 = malloc(20)

p3 = malloc(24)

free(p2)

p4 = malloc(24) Oh	no!	(What	would	happen	now?)

=	4-byte	word

11/23/2016

26

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L22: Virtual Memory III

Implementation	Issues

v How	do	we	know	how	much	memory	to	free	given	
just	a	pointer?

v How	do	we	keep	track	of	the	free	blocks?
v How	do	we	pick	a	block	to	use	for	allocation	(when	
many	might	fit)?

v What	do	we	do	with	the	extra	space	when	allocating	
a	structure	that	is	smaller	than	the	free	block	it	is	
placed	in?

v How	do	we	reinsert	a	freed	block	into	the	heap?

51

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L22: Virtual Memory III

Knowing	How	Much	to	Free

v Standard	method
§ Keep	the	length	of	a	block	in	the	word	preceding	the	block

• This	word	is	often	called	the	header	field or header

§ Requires	an	extra	word	for	every	allocated	block

52

free(p0)

p0 = malloc(16)

p0

block	size data

20

=	4-byte	word	(free)

=	4-byte	word	(allocated)

11/23/2016

27

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L22: Virtual Memory III

For	Fun:		DRAMMER	Security	Attack
v Why	are	we	talking	about	this?

§ Current: Announced	in	October	2016;	Google	released	
Android	patch	on	November	8

§ Relevant: Uses	your	system’s	memory	setup	to	gain	
elevated	privileges
• Ties	together	some	of	what	we’ve	learned	about	virtual	memory	and	
processes

§ Interesting: It’s	a	software	attack	that	uses	only	hardware	
vulnerabilities and	requires	no	user	permissions

53

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L22: Virtual Memory III

Underlying	Vulnerability:		Row	Hammer

v Dynamic	RAM	(DRAM)	has	gotten	denser	over	time
§ DRAM	cells	physically	closer	and	
use	smaller	charges

§ More	susceptible	to	“disturbance
errors”	(interference)

v DRAM	capacitors	need	to	be	
“refreshed”	periodically	(~64	ms)
§ Lose	data	when	loss	of	power
§ Capacitors	accessed	in	rows

v Rapid	accesses	to	one	row	can
flip	bits	in	an	adjacent	row!
§ ~	100K	to	1M	times 54

By	Dsimic (modified),	CC	BY-SA	4.0,	
https://commons.wikimedia.org/w

/index.php?curid=38868341

11/23/2016

28

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L22: Virtual Memory III

Row	Hammer	Exploit

v Force	memory	access	by	constantly
reading	and	then	flushing	the	cache
§ clflush – flush	cache	line

• Invalidates	cache	line	containing	the	
specified	address

• Not	available	in	all	machines	or	
environments

§ Want	addresses	X and	Y to	fall	in	activation	target	row(s)
• Good	to	understand	how	banks of	DRAM	cells	are	laid	out

v The	row	hammer	effect	was	discovered	in	2014	
§ Only	works	on	certain	types	of	DRAM	(2010	onwards)
§ These	techniques	target	x86	machines

55

hammertime:
mov (X), %eax
mov (Y), %ebx
clflush (X)
clflush (Y)
jmp hammertime

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L22: Virtual Memory III

Consequences	of	Row	Hammer

v Row	hammering	process	can	affect	another	process	
via	memory
§ Circumvents	virtual	memory	protection	scheme
§ Memory	needs	to	be	in	an	adjacent	row	of	DRAM

v Worse:		privilege	escalation
§ Page	tables	live	in	memory!
§ Hope	to	change	PPN	to	access	other	parts	of	memory,	or	
change	permission	bits

§ Goal: gain	read/write	access	to	a	page	containing	a	page	
table,	hence	granting	process	read/write	access	to	all	of	
physical	memory

56

11/23/2016

29

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L22: Virtual Memory III

Effectiveness?

v Doesn’t	seem	so	bad	– random	bit	flip	in	a	row	of	
physical	memory
§ Vulnerability	affected	by	system	setup	and	physical	
condition	of	memory	cells

v Improvements:
§ Double-sided	row	hammering	increases	speed	&	chance
§ Do	system	identification	first		(e.g.	Lab	4)

• Use	timing	to	infer	memory	row	layout	&	find	“bad”	rows
• Allocate	a	huge	chunk	of	memory	and	try	many	addresses,	looking	for	
a	reliable/repeatable	bit	flip

§ Fill	up	memory	with	page	tables	first
• Fork extra	processes;	hope	to	elevate	privileges	in	any	page	table

57

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L22: Virtual Memory III

What’s	DRAMMER?

v No	one	previously	made	a	huge	fuss
§ Prevention: error-correcting	codes,	target	row	refresh,	
higher	DRAM	refresh	rates

§ Often	relied	on	special	memory	management	features
§ Often	crashed	system	instead	of	gaining	control

v Research	group	found	a	deterministic	way	to	induce	
row	hammer	exploit	in	a	non-x86	system	(ARM)
§ Relies	on	predictable	reuse	patterns	of	standard	physical	
memory	allocators

§ Universiteit Amsterdam,	Graz	University	of	Technology,	and
University	of	California,	Santa	Barbara

58

11/23/2016

30

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L22: Virtual Memory III

DRAMMER	Demo	Video	
v It’s	a	shell,	so	not	that	sexy-looking,	but	still	interesting

§ Apologies	that	the	text	is	so	small	on	the	video

59

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L22: Virtual Memory III

How	did	we	get	here?

v Computing	industry	demands	more	and	faster	storage	
with	lower	power	consumption

v Ability	of	user	to	circumvent	the	caching	system
§ clflush is	an	unprivileged	instruction	in	x86
§ Other	commands	exist	that	skip	the	cache

v Availability	of	virtual	to	physical	address	mapping
§ Example: /proc/self/pagemap on	Linux	
(not	human-readable)

v Google	patch	for	Android	(Nov.	8,	2016)
§ Patched	the	ION	memory	allocator

60

11/23/2016

31

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L22: Virtual Memory III

More	reading	for	those	interested

v DRAMMER	paper:		
https://vvdveen.com/publications/drammer.pdf

v Google	Project	Zero:		
https://googleprojectzero.blogspot.com/2015/03/exp
loiting-dram-rowhammer-bug-to-gain.html

v First	row	hammer	paper:		
https://users.ece.cmu.edu/~yoonguk/papers/kim-
isca14.pdf

v Wikipedia:		
https://en.wikipedia.org/wiki/Row_hammer

61

