UNIVERSITY of WASHINGTON

Processes
CSE 351 Winter 2017

we

s

L19: Processes CSE351, Winter 2017

DEAR VARIOUS PARENTS, GRANDPARENTS, CO-WORKERS,

AND OTHER “NOT COMPUTER PEOPLE.”

WE DON'T MAGICALLY KNOW HOW TO DO EVERYTHING IN EVERY
PROGRAM. WHEN WE HELP YOU, WE'RE USUALLY JUST DOING THIS:

PLEASE PRINT THIS FLOWCHART OUT AND TAPE IT' NEAR YOUR SCREEN.
CONGRATULATIONS; YOU'RE NOW THE LOCAL COMPUTER EXPERT!

https://xked.com/627,

UNI

Administrivia

« Lab 4 released!

C c CL« &"'Y’Ly

.

L19: Processes

(CSE351, Winter 2017

[*sﬂ

¢¢ Cecle St

/.\>ly ol'(»oqr' u//t/'
0 o
: H
[H
5 i}
4 Ml‘f;

3/2/17

UNIVERSITY of WASHINGTON L19: Processes

CSE351, Winter 2017

Leading Up to Processes

« System Control Flow
= Control flow
® Exceptional control flow

= Asynchronous exceptions (interrupts)
" Synchronous exceptions (traps & faults)

UNIVERSITY of WASHINGTON

L19: Processes

(CSE351, Winter 2017

Asynchronous Exceptions (Interrupts) ...

T (com

« Caused by events external to the processor g
® |ndicated by setting the processor’s interrupt pin(s) (wire into CPU)
= After interrupt handler runs, the handler returns to “next” instruction

“

+ Examples:

= |/O interrupts
- Hitting Ctrl-C on the keyboard
« Clicking a mouse button or tapping a touchscreen
- Arrival of a packet from a network
- Arrival of data from a diskc—"

=~ Timer interrupt
- Every few ms, an external timer chip triggers an interrupt
+ Used by the OS kernel to take back control from user programs

3/2/17

UNIVERSITY of WASHINGTON L19: Processes CSE351, Winter 2017

Synchronous Exceptions

« Caused by events that occur as a result of executing an

instruction:
= Traps

- Intentional: transfer control to OS to perform some function

« Examples: glesmbreakpoint traps, special instructions

- Returns control to “next” instruction ("cuwert" instr did Lt # uws SUWW(HD)
® Faults

« Unintentional but possibly recoverable

- Examples: page faults, segment protection faults, integer divide-by-zero
exceptions —

- Either re-executes faulting (“current”) instruction or aborts
= Aborts W re coveralle & et rewverable
+ Unintentional and unrecoverable
- Examples: parity error, machine check (hardware failure detected)
+ Aborts current program

UNIVERSITY of WASHINGTON L19: Processes CSE351, Winter 2017

System Calls

= Each system call has a unique ID number
« Examples for Linux on x86-64:

Number Name Description
Q read Read file
1 write Write file
2 open Open file
3 close Clese file
4 stat Get info about file
57 fork Create process
59 execve Executea—pr—ogram
60 _exit Terminate process
62 kill Send signal to process

3/2/17

3/2/17

UNIVERSITY of WASHINGTON L19: Processes CSE351, Winter 2017

Traps Example: Opening File

« Usercalls open(filename, options)
+ Calls __open function, which invokes system call instruction syscall

00000000000e5d70 <_ open>:
eb5d79: b8 02 00 00 00 mov $0x2,%eax # open 1is syscall 2
e5d7e: 0f 05 ysca # return value in %Srax
e5d80: 48 3d 01 f0 ff ff cmp XfFEFEFEFFFFEFO0L, Srax
ebdfa: c3 retq
User code OS Kernel code m %rax contains syscall number
m Other argumentsin $rdi,
sysc Exception $rsi, $rdx, $rl10, $r8, $r9
cmp] in%
{Open fle m Returnvalue in $rax
Returns m Negative value is an error

corresponding to negative
errno

UNIVERSITY of WASHINGTON L19: Processes CSE351, Winter 2017

Fault Example: Page Fault

int a[1000];
int main ()

« User writes to memory location {

« That portion (page) of user’'s memory a[500] = 13;
is currently on disk }
| 80483b7: c7 05 10 9d 04 08 0d movl ($0xd)0x8049d10
_R
User code 0S Kernel code VA 092009°5

% exception: page fault andle_page_fault:

movl
Create page and
returns load into memory
Pl

« Page fault handler must load page into physical memory
+ Returns to faulting instruction: mov is executed again!
= Successful on second try

UNIVERSITY of WASHINGTON

Fault Example: Invalid Memory Reference

int a[1000];
int main ()

{

a[5000] = 13;
}

| 80483b7: c7 05 60 e3 04 08 0d movl $0xd, 0x804e360

User Process oS

ol I exception: page fault wt:

. detect invalid address
signal process

Page fault handler detects invalid address

Sends SIGSEGV signal to user process % X

User process exits with “segmentation fault” —

CSE351, Winter 2017

UNIVERSITY of WASHINGTON L19: Processes

Processes

+ Processes and context switching

« Creating new processes
" fork () andwait ()

« Zombies

(CSE351, Winter 2017

10

3/2/17

UNIVERSITY of WASHINGTON L19: Processes CSE351, Winter 2017

What is a process? It’s an illusion!

(N\
Process 1

Memory

Stack T

Heap -

Data B

7 Code -

CPU

Registers
— "' g J
[oromeee)

=

Disk

11

UNIVERSITY of WASHINGTON L19: Processes CSE351, Winter 2017

What is a process?

« Another abstraction in our computer system
® Provided by the OS

® 0S uses a data structure to represent each process

= Maintains the interface between the program and the

underlying hardware (CPU + memory)

« What do processes have to do with exceptional
control flow?

= Exceptional control flow is the mechanism the OS uses to
enable multiple processes to run on the same system

+« What is the difference between:
= A processor? A program? A process?

12

3/2/17

UNIVERSITY of WASHINGTON L19: Processes

CSE351, Winter 2017

Processes

o

« A process is an instance of a running program
—
® One of the most profound ideas in computer science
® Not the same as “program” or “processor”

« Process provides each program with two key
abstractions: Memory

® logical control flow Stack

+ Each program seems to have jexclusive use of the CPU} Heap

Data
+ Provided by kernel mechanism called context switching

Code
® Private address space

CPU
+ Each program seems to have exclusive use of mt&i/n memory
- Provided by kernel mechanism called virtual memory~>

e ==

13

UNIVERSITY of WASHINGTON L19: Processes

(CSE351, Winter 2017

What is a process? It’s an illusion!
Computer Process 3
Process 2 "M:"“:'y"
Heap
“Memor\{‘ ‘ Data
Sack Process 1 — Sl
DE(: “Memory” & CPU”
Stack
Heap .

Data
Code

Operating
System

Disk

/Applications/

Chrome.exe] ’ Slack.exe l ’ PowerPoint.exe

14

3/2/17

3/2/17

CSE351, Winter 2017

UNIVERSITY of WASHINGTON L19: Processes

Multiprocessing: The lllusion

/ Memory Memory Memory
Stack Stack Stack
Heap Heap Heap
Data Data eee Data
Code Code Code
—
CPU CPU CPU
| Registers | | Registers |

« Computer runs many processes simultaneously
= Applications for one or more users
- Web browsers, email clients, editors, ...

= Background tasks

« Monitoring network & /0 devices
15

(CSE351, Winter 2017

UNIVERSITY of WASHINGTON L19: Processes

Multiprocessing: The Reality

Wrves,) e 1Memory s coss IV
Stack Stack Stack
Heap Heap Heap
Data Data eee Data
Code Code Code
Saved Saved Saved

registers registers registers

R
CP
Registers

® Process executions interleaved, CPU runs one at a time
® Address spaces managed by virtual memory system (later in course)
= Fxecution context (register values, stack, ...) for other processes saved in

memory i

UNIVERSITY of WASHINGTON L19: Processes

CSE351, Winter 2017

Multiprocessing
Memory
Stack Stack Stack
Heap Heap Heap
Data Data eee Data
Code : Code Code
Saved Saved Saved
registers : registers registers
VAN
11
CPU

« Context switch
NLexXt Swi
1) Save current registers in memory

17

UNIVERSITY of WASHINGTON L19: Processes

(CSE351, Winter 2017

Multiprocessing
Memor
Stack Stack : Stack
Heap Heap : Heap
Data Data aes Data
Code : Code Code
Saved Saved Saved
registers : registers registers
CPU

« Context switch
1) Save current registers in memory

2) Schedule next process for execution
’//\

18

3/2/17

3/2/17

UNIVERSITY of WASHINGTON L19: Processes CSE351, Winter 2017

Multiprocessing
v EF
VO, Memory weEy

Stack) Stack Stack
Heap / Heap Heap
Data / Data eee Data
Code / : Code . Code
Saved Saved Saved
~registers : registers . registers

2] . |1

. : A V.4

\%f\? |l cpu

+ Context switch
1) Save current registers in memory
2) Schedule next process for execution
3) Load saved registers and switch address space

19

UNIVERSITY of WASHINGTON L19: Processes CSE351, Winter 2017

Multiprocessing: The (Modern) Reality

Memor
Stack Stack Stack
Heap Heap Heap
Data 5 o Data a s Data
Code - Code . Code
Saved Saved Saved
registers - registers . registers
Gl Gl Do Multicore processors
Registers | |::| | Registers | = Multiple CPUs (“cores”) on single chip
.] Sharema|nmemory(andsomeofthe

caches)
= Each can execute a separate process

« Kernel schedules processes to cores
- Still constantly swapping processes

20

10

UNIVERSITY of WASHINGTON L19: Processes CSE351, Winter 2017

A I CPU
Concurrent Processes (Assume only one cpu J

« Each process is a logical control flow

« Two processes run concurrently (are concurrent) if
their instruction executions (flows) overlap in time
= Otherwise, they are sequential

« Example: (running on single core)
® Concurrent: A&B,A&C

. Sequential: B&C Process A Process B Process C
| b g1,
time - [
l 2 ds l

21

UNIVERSITY of WASHINGTON L19: Processes CSE351, Winter 2017

[Assume only one CPU]

User’s View of Concurrency

+ Control flows for concurrent processes are physically
disjoint in time

= CPU only executes instructions for one process at a time

« However, the user can think of concurrent processes
as executing at the same time, in parallel

mmcess B Process C W Process A Process B Process C

[~Tows | User View]]
™

L \ -~
L \ [

7 .
oar minds Fill These in

time

22

3/2/17

11

UNIVERSITY of WASHINGTON L19: Processes CSE351, Winter 2017

[Assume only one CPU]

Context Switching

« Processes are managed by a shared chunk of OS code
called the kernel
= The kernel is not a separate process, but ratheu‘ns as part of a user

process U/
L Ry Memory
Kernel virtual memory) N invisible to
OxFFFF FFFF FFFF T user code
%+ |n x86-64 Linux: (created at run time) o
T orsp (stack pointer)
= Same address in each process R

refers to same shared Memory mapped region for
memory Iocation shared libraries

t

Run-time heap
(created at run time by malloc)

Read/write data
Loaded from the
executable file
Read-only code and data
0x0000 0040 0000
]
o S ’

UNIVERSITY of WASHINGTON L19: Processes CSE351, Winter 2017

[Assume only one CPU]

Context Switching

« Processes are managed by a shared chunk of OS code
called the kernel
= The kernel is not a separate process, but rather runs as part of a user
process
+ Context switch passes control flow from one process to
another and is performed using kernel code

Process A ' Process B
,bwr*);ﬂ" : —
: £ 1 user code
. XC 17'0/7

kernel code } context switch
time
user code

kernel code } context switch

user code

24

3/2/17

12

3/2/17

UNIVERSITY of WASHINGTON CSE351, Winter 2017

Processes

« Processes and context switching

+ Creating new processes
= fork () andwait ()

«» Zombies

25

UNIVERSITY of WASHINGTON L1 CSE351, Winter 2017

Creating New Processes & Programs

e N e N

Process 1 Process 2

“Memory”

Stack
Heap fork ()

“CPU” “CPU”

exec™ ()

‘ Chrome.exe \

26

13

UNIVERSITY of WASHINGTON L19: Processes CSE351, Winter 2017

Creating New Processes & Programs

« fork-exec model (Linux):
®= fork () creates a copy of the current process

= exec®() replaces the current process’ code and address
space|with the code for a different program
« Family: execv, execl, execve, execle, execvp, exec;E

®" fork () and execve () are system calls

« Other system calls for process management:
" getpid()
" exit ()

" wait (),waitpid()

27

UNIVERSITY of WASHINGTON L19: Processes CSE351, Winter 2017

fork: Creating New Processes

+ pid t fork(void)
= Creates a new “child” process that is identical to the calling “parent”
process, including all state (memory, registers, etc.)
= Returns 0 to the child process
= Returns child’s process ID (PID) to the parent process

- Child is almost identical to parent:

= Child gets an identical pid t pid = fork();
(but separate) copy of the | 3¢ (pid == 0) |

parent’s virtual address printf ("hello from child\n");
space } else {
= Child has a different PID printf ("hello from parent\n");

than the parent)

« forkis unique (and often confusing) because it is called once
but returns “twice”
SHurTls RIS

28

3/2/17

14

UNIVERSITY of WASHINGTON

Understanding fork

Process X (parent)

L19: Processes

Process Y (child)

. pid_t pid = fork();
if

(pid == 0) {
printf ("hello from child\n");
} else {

printf ("hello from parent\n");

» pid_t pid = fork();
if

(pid == 0) |

printf ("hello from child\n");
} else {

printf ("hello from parent\n");

29

UNI

VERSITY of WASHINGTON

Understanding fork

Process X (parent)

L19: Processes

Winter 2017

Process Y (child)

» pid_t pid = fork();

pid_t pid = fork();
if (pid == 0) {

if (pid == 0) {
printf ("hello from child\n");
} else {

printf ("hello from parent\n");

pid_t pid = fork();
if (pid == 0) {

printf ("hello from child\n");
} else {

printf ("hello from parent\n");

printf ("hello from child\n");
} else {
printf ("hello from parent\n");

pid t pid = fork(); -
if (pid == 0) { m
printf ("hello from child\n");
} else {
printf ("hello from parent\n");

30

3/2/17

15

3/2/17

UNIVERSITY of WASHINGTON L19: Processes CSE351, Winter 2017

Understanding fork

Process X (parent) _— — ProcessY (child)
» pid_t pid = fork(); » pid_t pid = fork();
" Lif (pid == 0) { if (pid == 0) {
printf ("hello from child\n"); printf ("hello from child\n");
} else { } else {
printf ("hello from parent\n"); printf ("hello from parent\n");

} }

pid_t pid = fork(); o pid_t pid = fork();
if (pid == 0) { if (pid == 0) {

printf ("hello from child\n"); »—‘>printf("hello from child\n");
} else { } else {
- printf ("hello from parent\n"); printf ("hello from parent\n");
} }
hello from parent hello from child

Which one appears first?

31

UNIVERSITY of WASHINGTON L19: Processes CSE351, Winter 2017

Fork Example

void forkl () {
int x = 1;
pid_t pid = fork() ;. _ Sf’\"‘h here
if (pid == 0)
printf ("Child has x = %d\n", @x); & dhld m‘y
else
printf ("Parent has x = %d\n", @x); F‘ouen" (sv\ly
bstly +— printf ("Bye from process %d with x = %d\n", getpid(), x);
}

3
¢

» Both processes continue/start execution after fork

® Child starts at instruction after the call to fork (storing into pid)

<

- Can’t predict execution order of parent and child
» Both processes start with x=1

= Subsequent changes to x are independent

24

3
o

Shared open files: stdout is the same in both parent and child

32

16

UNIVERSITY of WASHINGTON L19: Processes CSE351, Winter 2017

Modeling fork with Process Graphs

« A process graph is a useful tool for capturing the partial
ordering of statements in a concurrent program
= Each vertex is the execution of a statement
" a — b means a happens before b
= Edges can be labeled with current value of variables
= printf vertices can be labeled with output

® Each graph begins with a vertex with no inedges

X3

*

Any topological sort of the graph corresponds to a feasible
total ordering

= Total ordering of vertices where all edges point from left to right

33

UNIVERSITY of WASHINGTON L19: Processes CSE351, Winter 2017

Fork Example: Possible Output

void forkl () {

int x = 1;
pid_t pid = fork();
if (pid == 0)
printf ("Child has x = %d\n", ++x);
else
printf ("Parent has x = %d\n", --x);

printf ("Bye from process %d with x = $d\n", getpid(), x);

x=2 Child Bye
++x printf printf

x=0 Parent Bye

——— 06— 0—————>0————0
x=1 fork --x printf printf

34

3/2/17

17

3/2/17

UNIVERSITY of WASHINGTON L19: Processes

CSE351, Winter 2017

Fork Example: Possible Output

void forkl () {
int x = 1;
pid_t pid = fork();
if (pid == 0)
printf ("Child has x = %d\n", ++x);
else
printf ("Parent has x = %d\n", --x);
printf ("Bye from process %d with x $d\n", getpid(), x);
}

Some possibilies !

c B2 c P P
chld x=2 Child Bye 82 BO C o
20— ————9 [
++x printf Aprlntf J P c BO
7 il RO B2 B2
vop v RO
4 x=0 Parent Bye as long &3 C cmes before B2

et Parent
x=1 for% --x printf printf ara P (ames before BO.

35

UNIVERSITY of WASHINGTON L19: Processes

(CSE351, Winter 2017

exec* should be checked for errors

Fork_Exec [Note: the return values of fork and]

+ fork-exec model:
= fork () creates a copy of the current process

= exec* () replaces the current process’ code and address
space with the code for a different program
+ Whole family of exec calls — see exec (3) and execve (2)

// Example arguments: path="/usr/bin/1s",
// argv([0]="/usr/bin/1s", argv[l]="-ahl", argv[2]=NULL
void fork exec(char *path, char *argv[]) ({
pid_t pid = fork();
if (pid != 0) {
printf ("Parent: created a child %d\n", pid);
} else {
printf ("Child: about to exec a new program\n");
execv (path, argv);

}
printf ("This line printed by parent only!\n");

36

18

3/2/17

UNIVERSITY of WASHINGTON

L19: Processes

CSE351, Winter 2017

Exec-ing a new program

tack Very high-level diagram
of what happens when

Heap you run the command

Data “1s” 1n a Linux shell:

Code: /usr/bin/bash
fork ()
parent \

1 child
Stack

Stack

exec* ()

—
Heap
Data Data
Code: /usr/bin/bash Code: /usr/bin/Is

37

UNIVERSITY of WASHINGTON

L19: Processes

(CSE351, Winter 2017

execve Example

Execute “/usr/bin/ls -1 lab4” in child process using current

environment:

myargv|[argc] = NULL
(argc == 3) myargv[2] 4+—> “lab4”
myargv[1l] > 1"
myargv [0] 4+—> “/usr/bin/ls”
myargv
envp[n] = NULL
envp [n-1] +— “PWD=/homes/iws/jhsia”
) envp [0] —+—> “USER=luisceze”
environ
if ((pid = fork()) == 0) { /* Child runs program */

if (execve (myargv([0], myargv, environ) < 0) {
printf ("$s: Command not found.\n", myargv[0]);
exit (1) ;

}

Run the printenv command in a Linux shell to see your own environment variables

38

19

UNIVERSITY of WASHINGTON L19: Processes CSE351, Winter 2017

Structure Of Null-terminated Bottom of stack
environment variable strings

the Stack when
d hew program

Null-terminated
;\ﬁgrrylr’p'gﬂq-ljne arg strings

StartS envp[n] == NULL
e lm—] environ
_| (global var)
envp[0] (T
argv[argc] = NULL envp
argv[argc-1] 2 (in $rdx)
— l'\o\r)‘ Mrﬂnr
GUEQIY | N argv[0] J
(in %rsi)
argc Stack frame for
S libc start main
([0cezeky) - = Top of stack

Future stack frame for
main

39

UNIVERSITY of WASHINGTON L19: Processes CSE351, Winter 2017

exit: Ending a process

+ void exit (int status)
" Exits a process
- Status code: 0is used for a normal exit, nonzero for abnormal exit

" atexit () registers functions to be executed upon exit

void cleanup (void) {
printf ("cleaning up\n") ;

}

void fork2 () {
atexit (cleanup) ;

fork () ; |

exit (0);

— “cleanup” is a function pointer

40

3/2/17

20

UNIVERSITY of WASHINGTON L19: Processes CSE351, Winter 2017

Processes

« Processes and context switching

+ Creating new processes
= fork() andwait ()

+» Zombies

41

UNIVERSITY of WASHINGTON L19: Processes CSE351, Winter 2017

Zombies

+« When a process terminates, it still consumes system resources
= Various tables maintained by OS
= Called a “zombie” (a living corpse, half alive and half dead)

» Reaping is performed by parent on terminated child

= Parent is given exit status information and kernel then deletes zombie
child process

K3
3

What if parent doesn’t reap?

= |f any parent terminates without reaping a child, then the orphaned
child will be reaped by init process (pid == 1)
« Note: on more recent Linux systems, init has been renamed systemd

® |n long-running processes (e.g. shells, servers) we need explicit reaping

42

3/2/17

21

UNIVERSITY of WASHINGTON L19: Processes

CSE351, Winter 2017

wait: Synchronizing with Children

+ int wait (int *child status)
= Suspends current process (i.e. the parent) until one of its
children terminates

= Return value is the PID of the child process that terminated
« On successful return, the child process is reaped

" Ifchild status !=NULL, thenthe *child status
value indicates why the child process terminated
+ Special macros for interpreting this status — see man wait (2)

« Note: If parent process has multiple children, wait
will return when any of the children terminates
®" waitpid can be used to wait on a specific child process

43

UNIVERSITY of WASHINGTON L19: Processes

(CSE351, Winter 2017

wait: Synchronizing with Children

void fork wait () |
int child status;

if (fork() == 0) {
printf ("HC: hello from child\n");
exit (0);
} else {
printf ("HP: hello from parent\n");
wait(&child status);
printf ("CT: child has terminated\n");
}
printf ("Bye\n") ;

} forks.c
HC exit
printf Feasible output: Infeasible output:
HC HP
cT HP CT
HP Bye CT Bye
fork printf wait printf Bye HC

44

3/2/17

22

UNIVERSITY of WASHINGTON L19: Processes CSE351, Winter 2017

Process Management Summary

« fork makes two copies of the same process (parent & child)
= Returns different values to the two processes
« exec* replaces current process from file (new program)
= Two-process program:
« First fork ()
- if (pid == 0) { /* child code */ } else { /* parent code */}
= Two different programs:
« First fork ()
- if (pid == 0) { execv(...) } else { /* parent code */}

» walt orwaitpid used to synchronize parent/child execution
and to reap child process

45

UNIVERSITY of WASHINGTON L19: Processes CSE351, Winter 2017

Summary

+ Processes

= At any given time, system has multiple active processes

® On a one-CPU system, only one can execute at a time, but
each process appears to have total control of the processor

= OS periodically “context switches” between active processes
- Implemented using exceptional control flow

+ Process management
® fork: one call, two returns
= execve: one call, usually no return
®" wait orwaitpid: synchronization
® exit: one call, noreturn

46

3/2/17

23

UNIVERSITY of WASHINGTON

CSE351, Winter 2017

BONUS SLIDES

Detailed examples:

o

» Consecutive forks
- Nested forks
Zombie example

0

0’0

0
e

0’0

- walt () example

’0

S

wailtpid () example

47

UNIVERSITY of WASHINGTON

(CSE351, Winter 2017

Example: Two consecutive forks

Bye
m—
void fork2 () { printf
printf ("LO\n") ; Ll Bye
fork () ; printf fork pri'ntf
printf ("L1\n"); Bye
fork () ; pri.ntf
printf ("Bye\n") ;
} b 0) Ll Bye

pr{ntf fork pri;tf fork printf

Feasible output: Infeasible output:
LO LO

LI Bye

Bye L1

Bye Bye

L1 L1

Bye Bye

Bye Bye

48

3/2/17

24

UNIVERSITY of WASHINGTON

CSE351, Winter 2017

Example: Three consecutive forks

« Both parent and child can continue forking

void fork3 () {

printf ("LO\n") ;
fork () ;

printf ("L1\n");
fork () ;

printf ("L2\n") ;
fork () ;

printf ("Bye\n") ;

L2

L1l |L2

Bye
Bye
Bye
Bye

LO |Ll |L2

Bye

:

Bye

Bye
Bye

49

UNIVERSITY of WASHINGTON

L19: Processes

(CSE351, Winter 2017

Example: Nested forks in children

void fork5() {
printf ("LO\n") ;

if (fork() == 0) {
printf ("L1\n");
if (fork() == 0) {

printf ("L2\n") ;

}

}
printf ("Bye\n") ;

Ll

L2 Bye
printf printf

Bye

LO Bye

*—re——>
printf fork printf

Feasible output:
LO

Bye

L1

L2

Bye

Bye

pri;tf fork printf

Infeasible output:
Lo

Bye

L1

Bye

Bye

L2

50

3/2/17

25

UNIVERSITY of WASHINGTON

Example: Zombie | ™% comt) - o)

linux> ./forks 7 &
[1] 6639
Running Parent, PI
Terminating Child,
linux> ps
PID TTY
6585 ttyp9 00:
6639 ttyp9 00:
6640 ttyp9 00:

6641 ttyp9 00:
linux> kill 6639
[1] Terminated
linux> ps

PID TTY

6585 ttyp9

6642 ttyp9

L19: Processes CSE351, Winter 2017

void fork7() {

/* Child */
printf ("Terminating Child, PID = %d\n",

getpid());
exit (0);
} else {
printf ("Running Parent, PID = %d\n",
getpid());

while (1); /* Infinite loop */

VL Pkren+ Pers(sﬁ forks.c

D = 6¢
PID

TIME

00:00 tcsh

00:03 forks

00:00 forks <defunct>
00:00 ps

+ ps shows child process as
“defunct”

« Killing parent allows child to be
reaped by init
L>0"\7 becouse child +””“"ﬁ+&') Lt

51

UNIVERSITY of WASHINGTON

Example:

Non-terminating

Child

L19: Processes CSE351, Winter 2017

void fork8() {
if (fork() == 0) {
/* Child */
printf ("Running Child, PID = %d\n",

getpid());
while (1); /* Infinite loop */
} else { R—child persists
printf ("Terminating Parent, PID = %d\n",

getpid());
exit (0);
}
} forks.c
linux> ./forks 8
Terminating Parent,
Running Child, PID « Child process still active even

linux> ps
PID TTY
6585 ttyp9
6676 ttyp9

6677 ttyp9
linux> kill
linux> ps

PID TTY
6585 ttyp9 00:
6678 ttyp9 00:

though parent has terminated

ps « Must kill explicitly, or else will
keep running indefinitely

52

3/2/17

26

3/2/17

UNIVERSITY of WASHINGTON L19: Processes

CSE351, Winter 2017

wait () Example

« If multiple children completed, will take in arbitrary order

« Can use macros WIFEXITED and WEXITSTATUS to get
information about exit status

void forkl0() {
pid_t pidI[N];
int i;
int child status;
for (i = 0; i < N; 1i++)
if ((pid[i] = fork()) == 0)
exit (100+1i); /* Child */
for (1 = 0; 1 < N; 1i++) {
pid_t wpid = wait(&child status);
if (WIFEXITED(child status))
printf ("Child %d terminated with exit status %d\n"
wpid, WEXITSTATUS (child status));
else

printf ("Child %d terminated abnormally\n", wpid);

53

UNIVERSITY of WASHINGTON L19: Processes CSE351, Winter 2017

waitpid (): Waiting for a Specific Process

pid_t waitpid(pid_tpid, int &status,intoptions)
® suspends current process until specific process terminates
® various options (that we won’t talk about)

void forkll () {
pid_t pid[N];
int i;
int child status;
for (1 = 0; 1 < N; i++)
if ((pid[i] = fork()) == 0)
exit (100+i); /* Child */
for (i = 0; i < N; 1i++) {
pid_t wpid = waitpid(pid[i], &child status, 0);
if (WIFEXITED(Child_StatuS))
printf ("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS (child status));

else
printf ("Child %d terminated abnormally\n", wpid);

54

27

