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What about writes?

RS

> Multiple copies of data exist:
= L1, L2, possibly L3, main memory
+ What to do on a write-hit?
= Write-through: write immediately to memory and all caches in-between

= Write-back: defer write to memory until line is evicted (replaced)
« Must track which cache lines have been modified (“dirty bit”)

X3

+ What to do on a write-miss?

= Write-allocate: (“fetch on write”) load into cache, update line in cache
« Good if more writes or reads to the location follow, example?

= No-write-allocate: (“write around”) just write immediately to memory

b

K3
8¢

Typical caches:
= Write-back + Write-allocate, usually

= Write-through + No-write-allocate, occasionally
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Write-back, write-allocate example

Contents of memory stored at address G

Cache |/G [ OxXBEEF lo] =——— dirty bit

tag (there is only one set in this tiny cache, so the tag is the entire block address!)

Memor F | OXCAFE | In this example we are sort of
Y - x - ignoring block offsets. Here a block
-G | 0xBEEF — | holds 2 bytes (16 bits, 4 hex digits).

Normally a block would be much
bigger and thus there would be
multiple items per block. While only
one item in that block would be
written at a time, the entire line would
be brought into cache. 5
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Write-back, write-allocate example
e

mov OxFACE, F
it

Cache | 1,:|>< OxBEEF M [€<———— dirty bit

— T
Memory FI 0xCAFE 5
Gl | 0xBEEF |
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Write-back, write-allocate example

mov OxFACE, F

Bx EACE }
Cache [ F CREAT 1O] fe—————— dirty bit
Step 1: Bring F into cache
Memory FI 0xCAF |
G| | 0XBEEF |
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Write-back, write-allocate example

mov OxFACE, F

Cache [ F O0xFACE [a]fe—-— dirty bit

Step 2: Write 0xFACE
to cache only and set
dirty bit

Memory F1 1 0xCAFE |

Gl | 0xBEEF |
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Write-back, write-allocate example

)

M
mov OxFACE, F mov OxXFEED, F
JXERE
OXEEED
Cache [F] OxFACE [1] f—— dirtybit
Write hit!
Write 0XFEED to
cache only
Memory FI 0xCAFE |
G| | 0XBEEF |
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Write-back, write-allocate example

/N
mov OxXFACE, F mov OxXFEED, F mov G, $rax
Cache | F | OxXFEED |1| [ dirty bit

Memory F1 1 0xCAFE |

Gl | 0xBEEF |

10
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Write-back, write-allocate example

mov OxXFACE, F mov OxXFEED, F mov G, $rax

Cache |[G] OxXBEEF lo] =——— dirty bit

1. Write F back to memory
since it is dirty

2. Bring G into the cache so

we can copy it into $rax

Memory FI 0XFEED |

G| | 0XBEEF |

11
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Optimizations for the Memory Hierarchy

+ Write code that has locality!
= Spatial: access data contiguously

= Temporal: make sure access to the same data is not too far
apartin time

« How can you achieve locality?
= Adjust memory accesses in code (software) to improve miss
rate (MR)

» Requires knowledge of both how caches work as well as your system'’s
parameters

® Proper choice of algorithm
ICE Of algorithm
® Loop transformations

-

12
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Example: Matrix Multiplication

C A
EEEEEEEE EEEEEEEE
C.—=> ——

HEEEEEEEE - X
EEEEEEEE BEEE

EEEEEEEN

ANEEEEEE BEEE

EEEEEEEE BEER

n
1k *
k=1 ' J
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Matrices in Memory

» How do cache blocks fit into this scheme?

® Row major matrix in memory:

L/

o ey

blocks~_ —>F

COLUMN of matrix (blue) is spread —
among cache blocks shown in red
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Naive Matrix Multiply

# move along rows of A
for (i = 0; 1 < n; i++)
# move along columns of B
for (7 = 0; jJ < n; J++)
# EACH k loop reads row of A, col of B
# Also read & write c(i,j) n times
for (k = 0; k < n; k++) ek e

cl[i*n+j] @a[@k] * b[]f*n‘\'@\; access pottery

BUAe (81 @ Read O Read ®£a2w\

A(i,:)

C(i,j) C(i,j)
5 =
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Cache Miss Analysis (Naive)

« Scenario Parameters:

® Square matrix (nXn), elements are doubles
L =TTTMOB wna U odA

= Cache block size K= 64 B = 8 doubles Y J
XTv e T e]e -]

= Cache size C < n (much smaller than n) f;ﬂ Aouldes in cache block

n/8 misses
— b4
« First iteration: = :
'E+n=9—nmisses - X 3
8§ — 8
A B
= Afterwards in cache:
(schematic) = X
|

8 doubles wide
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Cache Miss Analysis (Naive)

« Scenario Parameters:
® Square matrix (nXn), elements are doubles
® Cache block size K= 64 B = 8 doubles
® Cache size C <& n (much smaller than n)

+ Other iterations: -
= Again: S = X
on .
n +n= n misses :
8 8 Y 8 wide
_

. omn 9
+ Total misses: 5 Xn? <§n3

once per element
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Linear Algebra to the Rescue (1)

« Can get the same result of a matrix multiplication by

splitting the matrices into smaller submatrices
(matrix “blocks”)

« For example, mu wo 4x4 matrices:

— A11 A12

= , with B defined similarly.
A Azz] d

AB = [(AllBll +A12321) (AIIBIZ +A12BZZ)
(A21Bll +A22821) (A21BIZ +A22822)
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Linear Algebra to the Rescue (2)

Cyy @ Ci3 | Cuq A11 Az | Az | A Bi1 | Bya { Bi3 | By
C21§Cp i Cp3 i Cpy Azr | A | @ Azd Ba1 | Baz | Bas | Bas
C31 Cy2|Cas Cou| |An A AuiAu| [Bw € Biy By

C41 C42 C43 C44 A41 A42 A43 A144 B41 £§42§ B43 B44

Matrices of size nXn, split into 4 blocks of size r (n=4r)
Cpp = AyBiy + ApByy + ApBay + AyBy, = 25 Ay*By,

<« Multiplication operates on small “block” matrices
= Choose size so that they fit in the cache!
= This technique called “cache blocking”
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Blocked Matrix Multiply

+ Blocked version of the naive algorithm:

F# move by rxr BLOCKS now

for (i = 0; i < n; 1 += r) ted O
for (7 = 0; j < n; j += 1) f&ukﬁjgﬁlwﬁ
| for (k = 0; k < n; k += 1) less € &'ﬁdﬂ (ode

# block matrix multiplication h

for (ib = i; ib < i+r; ib++)
for (Jjb = j; jb < j+r; jb++)
for (kb = k; kb < k+r; kb++)
c[ib*n+ijb] += a[ib*n+kb]*b[kb*n+jb];

® 1 = block matrix size (assume r divides n evenly)

3/2/17
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Cache Miss Analysis (Blocked)

. M HBHH A
<« Scenario Parameters: vow: [T LUTTTT)

= Cache block size K= 64 B = 8 doubles
® Cache size C « n (much smaller thann
#® Three blocks M (rXr) fit into ng\b«ﬁi\n@ C_
rZelemen

CSE351, Winter 2017

Ignoring
matrix c

MU B P 4P

n/r blocks

K—H
™3

Y
. . CY >
3 Flrst‘((block) iteration:
= 12 /8 misses per block = X
" Bn/xr?/8 = mr/4 -

n/r blocks in row and column

= Afterwards in cache
(schematic)

b
|
i
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Cache Miss Analysis (Blocked)

+ Scenario Parameters:
® Cache block size K= 64 B = 8 doubles
® Cache size C <« n (much smaller than n)
® Three blocks M (rxr) fit into cache: 3r2 < C

» Other (block)
iterations: —

= Same as first iteration

= 2n/rxr?/8 = nr/4

« Total misses:
= nr/4x(n/r)? =n3/(4r)

(CSE351, Winter 2017

Ignoring
matrix c

n/r blocks

3/2/17
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Matrix Multiply Summary

Naive: (9/8) xn®

+ Blocked:  1/(4r) xn?
= |fr=8, differenceis4*8*9/8 =36x
= Ifr=16, difference is 4*16 * 9/8 = 72x

+ Blocking optimization only works if the blocks fit in the cache
= Suggests largest possible block size up to limit 372 < C

Matrix multiplication has inherent temporal locality:
® |nput data: 3n?, computation 2n3

= Every array element used O (n) times!

= But program has to be written properly

23
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Matrix Multiply Visualization

« Heren =100, C =32KiB, r =30
Naive:

Blocked:
Cache misses: 551888
_ L]

Cache misses: 53,888

= 1,020,000
cache misses
= 90,000
cache misses

12



UNIVERSITY of WASHINGTON L18: Cache Example, System Control Flow

Cache-Friendly Code

« Programmer can optimize for cache performance
® How data structures are organized

® How data are accessed
» Nested loop structure
« Blocking is a general technique

« All systems favor “cache-friendly code”

= Getting absolute optimum performance is very platform
specific
» Cache size, cache block size, associativity, etc.

= Can get most of the advantage with generic code

reve + Keep working set reasonably small (temporal locality)
coles . » Use small strides (spatial locality)
Ko

+ Focus on inner loop code

25
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Core i7 Haswell

The Memory Mountain 2.1GHz

32 KB L1 d-cache

\
\ W o T VLU 256 KB L2 cache
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PfefS_EChl g _— s 64 B block size
< 16000 P
S
€__ 14000 -
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=i
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5 ﬁ Ridges
£ 3 6000 of temporal
locality
4000
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Learning About Your Machine

< Linux:

" lscpu

L18: Cache Example, System Control Flow
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= |s /sys/devices/system/cpu/cpuO/cache/index0/
« Ex: cat /sys/devices/system/cpu/cpuO/cache/index*/size

® cat /proc/cpuinfo | grep cache | sort | unig

+ Windows:

" wmic memcache get <query>

(all values in KB)

" Ex: wmic memcache get MaxCacheSize

« Modern processor specs: http://www.7-cpu.com/

UNI
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R d m Data & addressing—

Oa ap Integers & floats -
C: Java: \l)uchmc code & C

x86 assembly _—
car *c = malloc(sizeof(car)); Car ¢ = new Car(); Procedures & stacks
c->miles = 100; c.setMiles(100); Arrays & s‘tl‘ucl Z
=T CGEEAITY; \Ic]ﬁor\ & caches
float mpg = get_mpg(c); float mpg = / )
free(c); ¢.getMPG(); ___?Pfocesses o
- —— ulua?limcmm} .
Assembly get_mpg: Memory allocation
. pushq %rbp Javavs. C
language' movq  %rsp, %rbp
popq  %rbp
ret l Os:
A 4

Machine 0111010000011000 -- 1 o

de: 100011010000010000000010 A
code: 1000100111000010 ||

110000011111101000011111 Windows 8 Mac =
v ¥

Computer /
system:

hs

3/2/17
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Leading Up to Processes

« System Control Flow

= Control flow

= Exceptional control flow

= Asynchronous exceptions (interrupts)
Synchronous exceptions (traps & faults)

29
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Control Flow

+ So far: we’ve seen how the flow of control changes
as a single program executes
+ Reality: multiple programs running concurrently

®= How does control flow across the many components of the
system?

® |n particular: More programs running than CPUs
« Exceptional control flow is basic mechanism used for:

= Transferring control between processes and OS
Handling I/0 and virtual memory within the OS

® Implementing multi-process apps like shells and web servers
Implementing concurrency

30
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Control Flow

« Processors do only one thing:

® From startup to shutdown, a CPU simply reads and executes
(interprets) a sequence of instructions, one at a time

® This sequence is the CPU’s control flow (or flow of control)

Physical control flow

<startup>

instr;

instr,
time instr,

instr,
<shutdown>

31
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Altering the Control Flow

« Up to now: two ways to change control flow:
® Jumps (conditional and unconditional)
= (;_ll_and_r_elurn
® Both react to changes in program state

K3
3

Processor also needs to react to changes in system state
= Unix/Linux user hits “Ctrl-C” at the keyboard
= User clicks on a different application’s window on the screen

® |nstruction divides by zero -

= System timer expires

« Can jumps and procedure calls achieve this?
= No —the system needsmechanisms for “exceptional” control flow!

e
32
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Java Digression #1

« Java has exceptions, but they’re something different
= Examples: NullPointerException, MyBadThingHappenedException, ...
® throw statements

= try/catch statements (“throw to youngest matching catch on the call-
stack, or exit-with-stack-trace if none”)

« Java exceptions are for reacting to (unexpected) program state
® Can be implemented with stack operations and conditional jumps
= A mechanism for “many call-stack returns at once”

= Requires additions to the calling convention, but we already have the
CPU features we need

« System-state changes on previous slide are mostly of a
different sort (asynchronous/external except for divide-by-
zero) and implemented very differently

33
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Exceptional Control Flow

« Exists at all levels of a computer system

+ Low level mechanisms

= Exceptions

« Change in processor’s control flow in response to a system event
(i.e., change in system state, user-generated interrupt, bugs)

- Implemented using a combination of hardware and OS software
« Higher level mechanisms
= /Process context switch
- Implemented by OS software and hardware timer
= Signals
« Implemented by OS software
+ We won't cover these — see CSE451 and CSE/EE474

34
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Exceptions

« An exception is transfer of control to the operating system (OS)
kernel in response to some event (i.e., change in processor state)
= Kernel is the memory-resident part of the OS
= Examples: division by 0, page fault, I/O request completes, Ctrl-C

User Code OS Kernel Code

=

event —— current_instr exceptio
next_instr exception processing by
exception handler, then:
* return to current instr,

e return to next_instr, OR
* abort

« How does the system know where to jump to in the OS?

UNIVERSITY of WASHINGTON L18: Cache Example, System Control Flow CSE351, Winter 2017

Exception Table

« A jump table for exceptions (also called Interrupt Vector Table)

= Each type of event has a unique
exception number k

= k =index into exception table JSduass
a.k.a interrupt vector e e —
( P ) W ! code for
= Handler k is called each time exception handler 0
exception k occurs ;
P Exctleptloy( code for
\o\ e A Table exception handler 1
’ Yo et S
\‘\¢ [4 )\/\ ( W s)ﬂ" v o code for
\ w v 2 Ll exception-handler 2
\
[V}
e s (o, LL\ -1
4 - .ee
\l T
A\al
Exception ELely
P exception handler n-1
numbers

36
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Exception Table (Excerpt)

Exception Number Description Exception Class
0 Divide error Fault

13 General protection fault Fﬁ

14 Pagefault Faul

18 Machine check ___Abort

32-255 0OS-defined Interrupt or trap

37
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Leading Up to Processes

« System Control Flow
Control flow

= Exceptional control flow

Asynchronous exceptions (interrupts)
Synchronous exceptions (traps & faults)

38
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Asynchronous Exceptions (Interrupts) ( _
ol con |
« Caused by events external to the processor o

® |ndicated by setting the processor’s interrupt pin(s) (wire into CPU)

= After interrupt handler runs, the handler returns to “next” instruction

+ Examples:

= |/O interrupts
- Hitting Ctrl-C on the keyboard
+ Clicking a mouse button or tapping a touchscreen
- Arrival of a packet from a network
« Arrival of data from a disk

®= Timer interrupt
- Every few ms, an external timer chip triggers an interrupt
« Used by the OS kernel to take back control from user programs

39
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Synchronous Exceptions

« Caused by events that occur as a result of executing an

instruction:
" Traps

- Intentional: transfer control to OS to perform some function

- Examples: system calls, breakpoint traps, special instructions

. Returns control to “next” instruction ( "cuwert" instr didd Ut ¥ s 5“!?“*‘“°)
® Faults

» Unintentional but possibly recoverable

- Examples: page faults, segment protection faults, integer divide-by-zero
exceptions

- Either re-executes faulting (“current”) instruction or aborts
= Aborts F e coverable 4 nd rewverable
« Unintentional and unrecoverable

- Examples: parity error, machine check (hardware failure detected)
« Aborts current program

40

3/2/17

20



UNIVERSITY of WASHINGTON

L18: Cache Example, S;

System Calls

CSE351, Winter 2017

ystem Control Flow

« Each system call has a unique ID number

« Examples for Linux on x86-64:

Number  Name

0 read

1 write
2 open

3 close
4 stat
57 fork
59 execve
60 _exit
62 kill

Description

Read file

Write file

Open file

Close file

Get info about file
Create process
Execute a program
Terminate process

Send signal to process

41
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Traps Example: Opening File

« Usercalls open (filename, options)

« Calls __open function, which invokes system call instruction syscall

00000000000e5d70 < open>:

e5d79: b8 02 00 00 00

mov $0x2,%eax # open is syscall 2

ebd7e: 0f 05 syscall # return value in %rax
e5d80: 48 3d 01 f0 ff ff cmp SOxfffffffffffff001, Srax
ebdfa: c3 retq
User code OS Kernel code m 2rax contains syscall number
m Otherargumentsin $rdi,
Exception $rsi, $rdx, $r10, %r8, %r9
syscall

cmp *----~\_\__--~lOpenfﬂe
Returns

m Returnvaluein $rax

m Negative value is an error
corresponding to negative
errno

(CSE351, Winter 2017
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Fault Example: Page Fault

int a[1000];

+ User writes to memory location ?nt wzd ()
« That portion (page) of user’s memory a[500] = 13;
is currently on disk }
| 80483b7: c7 05 10 9d 04 08 0d movl  $0xd,0x8049d10
User code

OS Kernel code

l exception: page fault  handle page fault:

movl
Create page and
returns load into memory

o

Page fault handler must load page into physical memory

Returns to faulting instruction: mov is executed again!
® Successful on second try

&
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Fault Example:

int a[1000];
int main ()

{

Invalid Memory Reference

a[5000] = 13;

}

| 80483b7: c7 05 60 e3 04 08 0d movl $0xd, 0x804e360

User Process oS

I exception: page fault

movl

handle_page_fault:

. detect invalid address
signal process

+ Page fault handler detects invalid address

« Sends SIGSEGYV signal to user process % X

0

S

User process exits with “segmentation fault”

44
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Summary

« Exceptions
= Events that require non-standard control flow

® Generated externally (interrupts) or internally (traps and
faults)

= After an exception is handled, one of three things may
happen:
« Re-execute the current instruction
+ Resume execution with the next instruction
« Abort the process that caused the exception

45
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