

W UNIVERSITY of WASHINGTON	L18: Cache Example, System Control Flow	CSE351, Winter 2017
Administrivia		
 Lab 3 due Mond 	ау	
 Lab 4 released N 	Ionday	
 HW 3 released 	_	
♦ Phew! ☺		
 Remember to de the book 	o readings and practice pr	oblems on
		2

N	/hat about writes?
*	Multiple copies of data exist:
	L1, L2, possibly L3, main memory
*	What to do on a write-hit?
	 Write-through: write immediately to memory and all caches in-between Write-back: defer write to memory until line is evicted (replaced) Must track which cache lines have been modified ("dirty bit")
*	What to do on a write-miss?
	 Write-allocate: ("fetch on write") load into cache, update line in cache Good if more writes or reads to the location follow, <i>example</i>?
	No-write-allocate: ("write around") just write immediately to memory
*	Typical caches:
	Write-back + Write-allocate, usually
	 Write-through + No-write-allocate, occasionally

	W UNIVERSITY of WASHINGTON L18: Cache Example, System Control Flow CSE331, Winter 201 Write-back, write-allocate example mov 0xFACE, F				
	dirty bit				
Step 1: Bi	ing F into cache				

Write-b mov 0xFAC	ack, write-allocate e	CSE331, Winter 201
Cache	F 0xFACE 1	dirty bit
Memory	F OxCAFE G OxBEEF	Step 2: Write 0xFACE to cache only <u>and set</u> dirty bit

UNIVERSITY of WASHING	GTON L18: Cache Example, System Control Flow CSE351, Winte
Write-b	ack, write-allocate example
mov 0xFAC	CE, F mov OxFEED, F mov G, %rax
Cache	F OxFEED 1 dirty bit
Memory	F OxCAFE
	G OxBEEF

W UNIVERSITY of WASHIN Write-k	oron Lie (Cache Example, System Control Flow	CSE351, Winter 2017
mov 0xFA	CE,F mov 0xH	FEED, F	mov G , %rax
Cache	G 0xB	EEF 0	dirty bit
Memory		xFEED xBEEF	 Write F back to memory since it is dirty Bring G into the cache so we can copy it into %rax
			11

W UNIVERSITY of WASHINGTON L18: Cache Example, System Control Flow CSE351, V	Vinter 2017
Optimizations for the Memory Hierarchy	
Write code that has locality!	
Spatial: access data contiguously	
 <u>Temporal</u>: make sure access to the same data is not too far apart in time 	
How can you achieve locality?	
 Adjust memory accesses in <i>code</i> (software) to improve miss rate (MR) 	
 Requires knowledge of <i>both</i> how caches work as well as your system' parameters 	S
Proper choice of algorithm	
Loop transformations	
	12

Roadm _{C:}	ар	Java:	Data & addressing Integers & floats Machine code & C
car *c = malloc c->miles = 100 c->gals = 17; float mpg = get free(c);	;	Car c = new Car(); c.setMiles(100); c.setGals(17); float mpg = c.getMPG();	x86 assembly Procedures & stac Arrays & structs Memory & caches Processes Virtual memory
Assembly language:	get_mpg: pushq %rbp movq %rsp, %rbp popq %rbp ret	OS:	Memory allocation Java vs. C
Machine code:	0111010000011000 1000110100000100000000	Windows [®] 8	Hac 👌
Computer system:			

W UNIVERSITY of WASHINGTON L18: Cache Example, System Control Flow	CSE351, Winter 2017
Exceptional Control Flow	
 Exists at all levels of a computer system 	
 Low level mechanisms 	
Exceptions	
 Change in processor's control flow in response to a system event (i.e., change in system state, user-generated interrupt, bugs) Implemented using a combination of hardware and OS software 	
 Higher level mechanisms 	
Process context switch	
Implemented by OS software and hardware timer	
 Signals 	
Implemented by OS software	
 We won't cover these – see CSE451 and CSE/EE474 	
	34

N UNIVER	SITY of WASHINGTON	L18: Cache Example, System Control Flow		CSE351, Winter 2017		
E>	Exception Table (Excerpt)					
	Exception Number	Description	Exception Class			
	0	Divide error	Fault			
	13	General protection fault	Fault			
	14	Page fault	Fault			
	18	Machine check	Abort			
	32-255	OS-defined	Interrupt or trap			
				37		

🚺 UNIVERSITY of WASHINGTON L18: Cache Example, System Control Flow	CSE351, Winter 2017
Leading Up to Processes	
 System Control Flow Control flow Exceptional control flow Asynchronous exceptions (interrupts) Synchronous exceptions (traps & faults) 	
	38

UNIVERSITY of WASHINGTON	L18: Cache Example, System Control Flow	CSE351, Winter 2017
Synchronous	s Exceptions	
instruction:	ts that occur as a result	of executing an
Examples: syst	ansfer control to OS to perform <i>tem calls</i> , breakpoint traps, spe ol to "next" instruction (^{° c} urre	
 Faults Unintentional 	but possibly recoverable	
	<i>e faults,</i> segment protection fa	aults, integer divide-by-zero
	utes faulting ("current") instruc Lif re coverable	tion or aborts Lif not recoverable
• <u>Examples</u> : pari	and unrecoverable ity error, machine check (hardv	ware failure detected)
Aborts current	program	40

W UNIVERSITY of WASHINGTON		L18: Cache Examp	ole, System Control Flow	CSE351, Winter 201
System C	alls			
Each system	em call	has a un	ique ID number	
 Examples 	for Lin	ux on x80	6-64:	
	Number	Name	Description	
	0	read	Read file	
	1	write	Write file	
	2	open	Open file	
	3	close	Close file	
	4	stat	Get info about file	
	57	fork	Create process	
	59	execve	Execute a program	
	60	_exit	Terminate process	
	62	kill	Send signal to process	
				41

	ole, System Control Flow CSE351, Winter
<pre>Calls open (filename, op Calls _ open function, which invok 000000000000000000000000000000000000</pre>	\$0x2,%eax # open is syscall \$2 # return value in %rax
e5dfa: c3 reto	 de %rax contains syscall number Other arguments in %rdi, %rsi, %rdx, %r10, %r8, %r9 Poturn value in %ray

	a[1000]; main()					
{	a[5000]	= 13;				
80	483b7:	c7 05	60 e3 04	08 0d	movl	\$0xd,0x804e360
	movl 🖣	cception: paging proces.	ge fault	1	_page_fau invalid ac	

WINTERSITY of WASHINGTON L18: Cache Example: System Control Flow Summary Exceptions Events that require non-standard control flow Generated externally (interrupts) or internally (traps and faults) After an exception is handled, one of three things may happen: Re-execute the current instruction Resume execution with the next instruction Abort the process that caused the exception

45