
3/2/17

1

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L18: Cache Example, System Control Flow

Cache	Example,	System	Control	Flow
CSE	351	Winter	2017

http://xkcd.com/292/

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L18: Cache Example, System Control Flow

Administrivia

v Lab	3	due	Monday
v Lab	4	released	Monday	
v HW	3	released
v Phew!	J

v Remember	to	do	readings	and	practice	problems	on	
the	book

2

3/2/17

2

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L18: Cache Example, System Control Flow

Core	i7:		Associativity

3

Regs

L1	
d-cache

L1	
i-cache

L2	unified	cache

Core	0

Regs

L1	
d-cache

L1	
i-cache

L2	unified	cache

Core	3

…

L3	unified	cache
(shared	by	all	cores)

Main	memory

Processor	package

slower,	but
more	likely
to	hit

Block/line	size:	
64	bytes	for	all

L1	i-cache	and	d-cache:
32	KiB,		8-way,	
Access:	4	cycles

L2	unified	cache:
256	KiB,	8-way,	
Access:	11	cycles

L3	unified	cache:
8	MiB,	16-way,
Access:	30-40	cycles

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L18: Cache Example, System Control Flow

What	about	writes?
v Multiple	copies	of	data	exist:

§ L1,	L2,	possibly	L3,	main	memory

v What	to	do	on	a	write-hit?
§ Write-through: write	immediately	to	memory	and	all	caches	in-between
§ Write-back: defer	write	to	memory	until	line	is	evicted	(replaced)

• Must	track	which	cache	lines	have	been	modified	(“dirty	bit”)

v What	to	do	on	a	write-miss?
§ Write-allocate: (“fetch	on	write”)	load	into	cache,	update	line	in	cache

• Good	if	more	writes	or	reads	to	the	location	follow,	example?
§ No-write-allocate: (“write	around”)	just	write	immediately	to	memory

v Typical	caches:
§ Write-back	+	Write-allocate,	usually
§ Write-through	+	No-write-allocate,	occasionally

4

3/2/17

3

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L18: Cache Example, System Control Flow

Write-back,	write-allocate	example

0xBEEFCache

Memory

G

0xCAFE

0xBEEF

0

F

G

dirty	bit

tag	(there	is	only	one	set	in	this	tiny	cache,	so	the	tag	is	the	entire	block	address!)

In	this	example	we	are	sort	of	
ignoring	block	offsets.	Here	a	block
holds	2	bytes	(16	bits,	4	hex	digits).	

Normally	a	block	would	be	much	
bigger	and	thus	there	would	be	
multiple	items	per	block.		While	only	
one	item	in	that	block	would	be	
written	at	a	time,	the	entire	line	would	
be	brought	into	cache.

Contents	of	memory	stored	at	address	G

5

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L18: Cache Example, System Control Flow

Write-back,	write-allocate	example

0xBEEFCache

Memory

G

0xCAFE

0xBEEF

0

F

G

mov 0xFACE, F

dirty	bit

6

3/2/17

4

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L18: Cache Example, System Control Flow

0xBEEFU 0

Write-back,	write-allocate	example

0xCAFECache

Memory

F

0xCAFE

0xBEEF

F

G

dirty	bit0xCAFE 0

Step	1:	Bring	F	into	cache

7

mov 0xFACE, F

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L18: Cache Example, System Control Flow

0xBEEFU 0

Write-back,	write-allocate	example

0xCAFECache

Memory

F

0xCAFE

0xBEEF

F

G

dirty	bit0xFACE 1

Step	2:	Write	0xFACE
to	cache	only	and	set
dirty	bit

8

mov 0xFACE, F

3/2/17

5

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L18: Cache Example, System Control Flow

0xBEEFU 0

Write-back,	write-allocate	example

0xCAFECache

Memory

F

0xCAFE

0xBEEF

F

G

mov 0xFEED, F

dirty	bit0xFACE 1

Write	hit!
Write	0xFEED to	

cache	only

9

mov 0xFACE, F

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L18: Cache Example, System Control Flow

0xBEEFU 0

Write-back,	write-allocate	example

0xCAFECache

Memory

F

0xCAFE

0xBEEF

F

G

mov G, %rax

dirty	bit0xFEED 1

10

mov 0xFEED, Fmov 0xFACE, F

3/2/17

6

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L18: Cache Example, System Control Flow

Write-back,	write-allocate	example

0xBEEFCache

Memory

G

0xFEED

0xBEEF

0

F

G

dirty	bit

1.	Write	F	back	to	memory	
since	it	is	dirty

2.	Bring	G	into	the	cache	so	
we	can	copy	it	into	%rax

11

mov G, %raxmov 0xFEED, Fmov 0xFACE, F

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L18: Cache Example, System Control Flow

Optimizations	for	the	Memory	Hierarchy

v Write	code	that	has	locality!
§ Spatial:		access	data	contiguously
§ Temporal:		make	sure	access	to	the	same	data	is	not	too	far	
apart	in	time

v How	can	you	achieve	locality?
§ Adjust	memory	accesses	in	code (software)	to	improve	miss	
rate	(MR)
• Requires	knowledge	of	both how	caches	work	as	well	as	your	system’s	
parameters

§ Proper	choice	of	algorithm
§ Loop	transformations

12

3/2/17

7

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L18: Cache Example, System Control Flow

Example:		Matrix	Multiplication

C

= ×

A B

ai* b*j

cij

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L18: Cache Example, System Control Flow

Matrices	in	Memory

v How	do	cache	blocks	fit	into	this	scheme?
§ Row	major	matrix	in	memory:

Cache	
blocks

COLUMN of	matrix	(blue)	is	spread	
among	cache	blocks	shown	in	red	

3/2/17

8

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L18: Cache Example, System Control Flow

Naïve	Matrix	Multiply

move along rows of A
for (i = 0; i < n; i++)
move along columns of B
for (j = 0; j < n; j++)
EACH k loop reads row of A, col of B
Also read & write c(i,j) n times
for (k = 0; k < n; k++)
c[i*n+j] += a[i*n+k] * b[k*n+j];

= + ×
C(i,j) A(i,:)

B(:,j)
C(i,j)

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L18: Cache Example, System Control Flow

Cache	Miss	Analysis	(Naïve)

v Scenario	Parameters:
§ Square	matrix	(𝑛×𝑛),	elements	are	doubles
§ Cache	block	size	K =	64	B	=	8	doubles
§ Cache	size	C ≪ 𝑛 (much	smaller	than	𝑛)

v First	iteration:
§ (

)
+ 𝑛 = *(

)
misses

§ Afterwards	in	cache:
(schematic)

×=

×=
8	doubles	wide

𝑛
m
isses

𝑛/8misses

Ignoring	
matrix	c

3/2/17

9

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L18: Cache Example, System Control Flow

Cache	Miss	Analysis	(Naïve)

v Scenario	Parameters:
§ Square	matrix	(𝑛×𝑛),	elements	are	doubles
§ Cache	block	size	K =	64	B	=	8	doubles
§ Cache	size	C ≪ 𝑛 (much	smaller	than	𝑛)

v Other	iterations:
§ Again:
(
)
+ 𝑛 = *(

)
misses

v Total	misses:		*(
)
×𝑛2 = *

)
𝑛3

8	wide

once	per	element

×=

Ignoring	
matrix	c

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L18: Cache Example, System Control Flow

Linear	Algebra	to	the	Rescue	(1)

v Can	get	the	same	result	of	a	matrix	multiplication	by	
splitting	the	matrices	into	smaller	submatrices	
(matrix	“blocks”)

v For	example,	multiply	two	4×4	matrices:

3/2/17

10

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L18: Cache Example, System Control Flow

Linear	Algebra	to	the	Rescue	(2)

Matrices	of	size	𝑛×𝑛,	split	into	4	blocks	of	size	𝑟 (𝑛=4𝑟)

C22 =	A21B12 +	A22B22 +	A23B32 +	A24B42	 =		åk A2k*Bk2

v Multiplication	operates	on	small	“block”	matrices
§ Choose	size	so	that	they	fit	in	the	cache!
§ This	technique	called	“cache	blocking”

C11 C12 C13 C14

C21 C22 C23 C24

C31 C32 C43 C34

C41 C42 C43 C44

A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A144

B11 B12 B13 B14

B21 B22 B23 B24

B32 B32 B33 B34

B41 B42 B43 B44

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L18: Cache Example, System Control Flow

Blocked	Matrix	Multiply
v Blocked	version	of	the	naïve	algorithm:

§ 𝑟 =	block	matrix	size	(assume	𝑟 divides	𝑛 evenly)

move by rxr BLOCKS now
for (i = 0; i < n; i += r)
for (j = 0; j < n; j += r)
for (k = 0; k < n; k += r)
block matrix multiplication

for (ib = i; ib < i+r; ib++)

for (jb = j; jb < j+r; jb++)

for (kb = k; kb < k+r; kb++)

c[ib*n+jb] += a[ib*n+kb]*b[kb*n+jb];

3/2/17

11

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L18: Cache Example, System Control Flow

Cache	Miss	Analysis	(Blocked)

v Scenario	Parameters:
§ Cache	block	size	K =	64	B	=	8	doubles
§ Cache	size	C ≪ 𝑛 (much	smaller	than	𝑛)
§ Three	blocks						(𝑟×𝑟)	fit	into	cache:		3𝑟2 < 𝐶

v First	(block)	iteration:
§ 𝑟3/8misses	per	block
§ 2𝑛/𝑟×𝑟2/8 = 𝑛𝑟/4

§ Afterwards	in	cache
(schematic)

𝑛/𝑟 blocks𝑟2 elements	per	block,	8	per	cache	block

𝑛/𝑟 blocks	in	row	and	column

Ignoring	
matrix	c

×=

×=

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L18: Cache Example, System Control Flow

Cache	Miss	Analysis	(Blocked)

v Scenario	Parameters:
§ Cache	block	size	K =	64	B	=	8	doubles
§ Cache	size	C ≪ 𝑛 (much	smaller	than	𝑛)
§ Three	blocks						(𝑟×𝑟)	fit	into	cache:		3𝑟2 < 𝐶

v Other	(block)	
iterations:
§ Same	as	first	iteration
§ 2𝑛/𝑟×𝑟2/8 = 𝑛𝑟/4

v Total	misses:
§ 𝑛𝑟/4×(𝑛/𝑟)2 = 𝑛3/(4𝑟)

Ignoring	
matrix	c

𝑛/𝑟 blocks

×=

3/2/17

12

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L18: Cache Example, System Control Flow

Matrix	Multiply	Summary
v Naïve: (9/8) ×𝑛3

v Blocked: 1/(4𝑟) ×𝑛3
§ If	𝑟 =	8,				difference	is	4*8	*	9/8			=	36x
§ If	𝑟 =	16,		difference	is	4*16	*	9/8	=	72x

v Blocking	optimization	only	works	if	the	blocks	fit	in	the	cache
§ Suggests	largest	possible	block	size	up	to	limit	3𝑟2 ≤ 𝐶

v Matrix	multiplication	has	inherent	temporal	locality:
§ Input	data:	3𝑛2,	computation	2𝑛3

§ Every	array	element	used	𝑂(𝑛) times!
§ But	program	has	to	be	written	properly

23

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L18: Cache Example, System Control Flow

Matrix	Multiply	Visualization

v Here	𝑛 =	100,	𝐶 =	32	KiB,	𝑟 =	30
Naïve:

Blocked:

≈	1,020,000
cache	misses

≈	90,000
cache	misses

3/2/17

13

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L18: Cache Example, System Control Flow

Cache-Friendly	Code
v Programmer	can	optimize	for	cache	performance

§ How	data	structures	are	organized
§ How	data	are	accessed

• Nested	loop	structure
• Blocking	is	a	general	technique

v All	systems	favor	“cache-friendly	code”
§ Getting	absolute	optimum	performance	is	very	platform	
specific
• Cache	size,	cache	block	size,	associativity,	etc.

§ Can	get	most	of	the	advantage	with	generic	code
• Keep	working	set	reasonably	small	(temporal	locality)
• Use	small	strides	(spatial	locality)
• Focus	on	inner	loop	code

25

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L18: Cache Example, System Control Flow

The	Memory	Mountain

26

128m
32m

8m
2m

512k
128k

32k
0

2000

4000

6000

8000

10000

12000

14000

16000

s1
s3

s5
s7

s9
s11

Size	(bytes)

Re
ad

	th
ro
ug
hp

ut
	(M

B/
s)

Stride	(x8	bytes)

Core	i7	Haswell
2.1	GHz
32	KB	L1	d-cache
256	KB	L2	cache
8	MB	L3	cache
64	B	block	size

Slopes	
of	spatial	
locality

Ridges	
of	temporal	
locality

L1

Mem

L2

L3

Aggressive	
prefetching

3/2/17

14

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L18: Cache Example, System Control Flow

Learning	About	Your	Machine

v Linux:
§ lscpu

§ ls	/sys/devices/system/cpu/cpu0/cache/index0/
• Ex:		cat	/sys/devices/system/cpu/cpu0/cache/index*/size

§ cat /proc/cpuinfo | grep cache | sort | uniq

v Windows:
§ wmic memcache get <query> (all	values	in	KB)
§ Ex:		wmic memcache get MaxCacheSize

v Modern	processor	specs:		http://www.7-cpu.com/

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L18: Cache Example, System Control Flow

Roadmap

28

car *c = malloc(sizeof(car));
c->miles = 100;
c->gals = 17;
float mpg = get_mpg(c);
free(c);

Car c = new Car();
c.setMiles(100);
c.setGals(17);
float mpg =

c.getMPG();

get_mpg:
pushq %rbp
movq %rsp, %rbp
...
popq %rbp
ret

Java:C:

Assembly
language:

Machine
code:

0111010000011000
100011010000010000000010
1000100111000010
110000011111101000011111

Computer
system:

OS:

Data & addressing
Integers & floats
Machine code & C
x86 assembly
Procedures & stacks
Arrays & structs
Memory & caches
Processes
Virtual memory
Memory allocation
Java vs. C

3/2/17

15

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L18: Cache Example, System Control Flow

Leading	Up	to	Processes

v System	Control	Flow
§ Control	flow
§ Exceptional	control	flow
§ Asynchronous	exceptions	(interrupts)
§ Synchronous	exceptions	(traps	&	faults)

29

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L18: Cache Example, System Control Flow

Control	Flow

v So	far: we’ve	seen	how	the	flow	of	control	changes	
as	a	single	program	executes

v Reality: multiple	programs	running	concurrently
§ How	does	control	flow	across	the	many	components	of	the	
system?

§ In	particular:	More	programs	running	than	CPUs

v Exceptional	control	flow is	basic	mechanism	used	for:
§ Transferring	control	between	processes and	OS
§ Handling	I/O and	virtual	memory within	the	OS
§ Implementing	multi-process	apps	like	shells	and	web	servers
§ Implementing	concurrency

30

3/2/17

16

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L18: Cache Example, System Control Flow

Control	Flow

v Processors	do	only	one	thing:
§ From	startup	to	shutdown,	a	CPU	simply	reads	and	executes	
(interprets)	a	sequence	of	instructions,	one	at	a	time

§ This	sequence	is	the	CPU’s	control	flow (or	flow	of	control)

31

<startup>
instr1
instr2
instr3
…
instrn
<shutdown>

Physical	control	flow

time

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L18: Cache Example, System Control Flow

Altering	the	Control	Flow
v Up	to	now:	two	ways	to	change	control	flow:

§ Jumps	(conditional	and	unconditional)
§ Call	and	return
§ Both	react	to	changes	in	program	state

v Processor	also	needs	to	react	to	changes	in	system	state
§ Unix/Linux	user	hits	“Ctrl-C”	at	the	keyboard
§ User	clicks	on	a	different	application’s	window	on	the	screen
§ Data	arrives	from	a	disk	or	a	network	adapter
§ Instruction	divides	by	zero
§ System	timer	expires

v Can	jumps	and	procedure	calls	achieve	this?
§ No	– the	system	needs	mechanisms	for	“exceptional” control	flow!

32

3/2/17

17

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L18: Cache Example, System Control Flow

Java	Digression	#1
v Java	has	exceptions,	but	they’re	something	different

§ Examples:		NullPointerException,	MyBadThingHappenedException,	…
§ throw statements
§ try/catch statements	(“throw	to	youngest	matching	catch	on	the	call-

stack,	or	exit-with-stack-trace	if	none”)

v Java	exceptions	are	for	reacting	to	(unexpected)	program	state
§ Can	be	implemented	with	stack	operations	and	conditional	jumps
§ A	mechanism	for	“many	call-stack	returns	at	once”	
§ Requires	additions	to	the	calling	convention,	but	we	already	have	the	

CPU	features	we	need

v System-state	changes	on	previous	slide	are	mostly	of	a	
different	sort	(asynchronous/external	except	for	divide-by-
zero)	and	implemented	very	differently

33

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L18: Cache Example, System Control Flow

Exceptional	Control	Flow
v Exists	at	all	levels	of	a	computer	system

v Low	level	mechanisms
§ Exceptions	

• Change	in	processor’s	control	flow	in	response	to	a	system	event	
(i.e.,		change	in	system	state,	user-generated	interrupt,	bugs)

• Implemented	using	a	combination	of	hardware	and	OS	software

v Higher	level	mechanisms
§ Process	context	switch

• Implemented	by	OS	software	and	hardware	timer
§ Signals

• Implemented	by	OS	software
• We	won’t	cover	these	– see	CSE451	and	CSE/EE474

34

3/2/17

18

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L18: Cache Example, System Control Flow

v An	exception is	transfer	of	control	to	the	operating	system	(OS)	
kernel	in	response	to	some	event (i.e.,	change	in	processor	state)

§ Kernel	is	the	memory-resident	part	of	the	OS
§ Examples:		division	by	0,	page	fault,	I/O	request	completes,	Ctrl-C

v How	does	the	system	know	where	to	jump	to	in	the	OS?

User	Code OS	Kernel	Code

exception
exception	processing	by	
exception	handler,	then:
• return	to	current_instr,
• return	to	next_instr,	OR
• abort

current_instr
next_instr

event	

Exceptions

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L18: Cache Example, System Control Flow

Exception	Table
v A	jump	table	for	exceptions	(also	called	Interrupt	Vector	Table)

§ Each	type	of	event	has	a	unique	
exception	number	𝑘

§ 𝑘 =	index	into	exception	table
(a.k.a interrupt	vector)

§ Handler	𝑘 is	called	each	time
exception	𝑘 occurs

36

0
1
2

...
n-1

Exception
Table

code	for		
exception	handler	0

code	for	
exception	handler	1

code	for
exception	handler	2

code	for	
exception	handler	n-1

...

Exception	
numbers

3/2/17

19

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L18: Cache Example, System Control Flow

Exception	Table	(Excerpt)

37

Exception Number Description Exception	Class

0 Divide	error Fault

13 General	protection	fault Fault

14 Page	fault Fault

18 Machine	check Abort

32-255 OS-defined Interrupt	or	trap

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L18: Cache Example, System Control Flow

Leading	Up	to	Processes

v System	Control	Flow
§ Control	flow
§ Exceptional	control	flow
§ Asynchronous	exceptions	(interrupts)
§ Synchronous	exceptions	(traps	&	faults)

38

3/2/17

20

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L18: Cache Example, System Control Flow

Asynchronous Exceptions	(Interrupts)
v Caused	by	events	external	to	the	processor

§ Indicated	by	setting	the	processor’s	interrupt	pin(s)	(wire	into	CPU)
§ After	interrupt	handler	runs,	the	handler	returns	to	“next”	instruction

v Examples:
§ I/O	interrupts

• Hitting	Ctrl-C	on	the	keyboard
• Clicking	a	mouse	button	or	tapping	a	touchscreen
• Arrival	of	a	packet	from	a	network
• Arrival	of	data	from	a	disk

§ Timer	interrupt
• Every	few	ms,	an	external	timer	chip	triggers	an	interrupt
• Used	by	the	OS	kernel	to	take	back	control	from	user	programs

39

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L18: Cache Example, System Control Flow

Synchronous Exceptions
v Caused	by	events	that	occur	as	a	result	of	executing	an	

instruction:
§ Traps

• Intentional:	transfer	control	to	OS	to	perform	some	function
• Examples:		system	calls,	breakpoint	traps,	special	instructions
• Returns	control	to	“next”	instruction

§ Faults
• Unintentional but	possibly	recoverable	
• Examples:		page	faults,	segment	protection	faults,	integer	divide-by-zero	
exceptions

• Either	re-executes	faulting	(“current”)	instruction	or	aborts
§ Aborts

• Unintentional and	unrecoverable
• Examples:		parity	error,	machine	check	(hardware	failure	detected)
• Aborts	current	program

40

3/2/17

21

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L18: Cache Example, System Control Flow

System	Calls

v Each	system	call	has	a	unique	ID	number
v Examples	for	Linux	on	x86-64:

41

Number Name Description

0 read Read	file

1 write Write	file

2 open Open	file

3 close Close	file

4 stat Get	info about	file

57 fork Create	process

59 execve Execute	a	program

60 _exit Terminate	process

62 kill Send	signal	to	process

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L18: Cache Example, System Control Flow

Traps	Example:		Opening	File
v User	calls		open(filename, options)
v Calls	__open function,	which	invokes	system	call	instruction	syscall

00000000000e5d70 <__open>:
...
e5d79: b8 02 00 00 00 mov $0x2,%eax # open is syscall 2
e5d7e: 0f 05 syscall # return value in %rax
e5d80: 48 3d 01 f0 ff ff cmp $0xfffffffffffff001,%rax
...
e5dfa: c3 retq

User	code OS	Kernel	code

Exception

Open	file
Returns

syscall
cmp

¢ %rax contains	syscall number
¢ Other	arguments	in	%rdi,	

%rsi,	%rdx,	%r10,	%r8,	%r9
¢ Return	value	in	%rax
¢ Negative	value	is	an	error	

corresponding	to	negative	
errno

3/2/17

22

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L18: Cache Example, System Control Flow

v User	writes	to	memory	location
v That	portion	(page)	of	user’s	memory	

is	currently	on	disk

v Page	fault	handler	must	load	page	into	physical	memory
v Returns	to	faulting	instruction:		mov is	executed	again!

§ Successful	on	second	try

int a[1000];
int main ()
{

a[500] = 13;
}

80483b7: c7 05 10 9d 04 08 0d movl $0xd,0x8049d10

User	code OS	Kernel	code

exception:	page	fault
Create	page	and	
load	into	memoryreturns

movl

Fault	Example:		Page	Fault

handle_page_fault:

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L18: Cache Example, System Control Flow

Fault	Example:		Invalid	Memory	Reference

v Page	fault	handler	detects	invalid	address
v Sends	SIGSEGV signal	to	user	process
v User	process	exits	with	“segmentation	fault”

44

int a[1000];
int main()
{

a[5000] = 13;
}

80483b7: c7 05 60 e3 04 08 0d movl $0xd,0x804e360

User	Process OS

exception:	page	fault

detect	invalid	address
movl

signal	process

handle_page_fault:

3/2/17

23

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L18: Cache Example, System Control Flow

Summary

v Exceptions
§ Events	that	require	non-standard	control	flow
§ Generated	externally	(interrupts)	or	internally	(traps	and	
faults)

§ After	an	exception	is	handled,	one	of	three	things	may	
happen:
• Re-execute	the	current	instruction
• Resume	execution	with	the	next	instruction
• Abort	the	process	that	caused	the	exception

45

