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K [block size: 16 B
capacity: 8 blocks
address: 16 bits

« Where would data from address 0x1833 be placed?
® Binary: Ob 0001 1000 0011 0011

S _CW
=A-1-0 l=logm 0 =log;(K)
A-bitaddress: | Tag(1) | Index() | offset(0) |
gz — 1 1=73 gey— 1=72 1=7?
Direct-mapped 2-way set associative 4-way set associative
Set Tag Data Set Tag Data Set Tag Data
0
0
1
0
2 1
3 | =
4
5 ’ |/
6 |
7 3 %W i
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Example Placement

block size:
capacity:
address:

16 B
8 blocks
16 bits

« Where would data from address 0x1833 be placed?
" Binary: Ob 0001 1000 0011 0011

=A-I-0 I=log,(C/K/N) 0 =log,(K)
A-bitaddress: | Tag(1) [  index(n [ offset(0) |
I=3 =2 I=1
Direct-mapped 2-way set associative 4-way set associative
Set Tag Data Set Tag Data Set Tag Data
0
0
L 0
2 1
3
4 2
> 1
6 3
7
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Block Replacement

« Any empty block in the correct set may be used to store block
+ If there are no empty blocks, which one should we replace?
= No choice for direct-mapped caches

® Caches typically use something close to least recently used (LRU)
(hardware usually implements “not most recently used”)

LRV totes wbewtnge ) Fomporel

|oc~b«'+7
Direct-mapped 2-way set associative 4-way set associative

Set Tag Data Set Tag Data Set Tag Data

0 0

1

0

2 1

3

4 2

> 1

6 3

7
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Cache Puzzle #2

« What can you infer from the following behavior?
= Cache starts empty, also known as a cold cache

= Access (addr: hit/miss) stream:
+ (10: miss), (12: miss), (10: miss)

7

Since e 10 blode L Lidked out, e kymou ‘N:'L ’

=+ Associativity? SN 12 s & miss ) [0 and 12 ace wek in Pt
Same block! .. € =1 or 2 ofF Feet
=1 byte - L= byler ,¢:,¢ﬂz
re Nymbep of sets?9= Wbl | o) o 2.2y

, & no ovelop N OGN
S euld be 1 or 2 T GAme sob §=1 - S{l::at‘::‘? :';"1 I=0 7

=
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UNIVERSITY of WASHINGTON L17: Caches III
General Cache Organization (S, N, K)
N = blocks/lines per set
r A N\ set
- —
| | [eoee L
“line” (block plus
| ” |' oo | I management bits)
S=#sets < | || [eoeelf |
=2!
00 0000000000000 0000000O0COCCCGIGS
| | [ooee] |
\
Yo (ol & Cache size:
e 0 2 C = SXNxK data bytes
SOX w I tag | I 0 | 1 | 2 l """ | B-1 | (doesn’t include V or Tag)
. ./
valid bit K = bytes per block ,

L17: Caches III (CSE351, Winter 2017
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Notation Changes

+ We are using different variable names from previous

quarters
= Please be aware of this when you look at past exam
questions or are watching videos

Block size K B
Cache size C ===
Associativity N E
Address width A m
Tag field width t
Index field width I k, s
Offset field width (0] n, b

Number of Sets S S
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Se{“ < line > byk
Cache Read

N = blocks/lines per set
A

CSE351, Winter 2017

1) Locate set

2) Check if any line in set
has matching tag

3) Yes +line valid: hit

4) Locate data starting
at offset

Address of byte in memory:
[ bits | 1bits [ 0bits |

tag set block
index offset

r Y
P
| I oo |
| I EXEX |
S=#sets< | I [o 00l |
=2!
0000 0000000000000 00000000C
| | o] |
\
[v] [Ceee ] [ofa[2] -]
valid bit

K = bytes per block

data begins at this offset

UNIVERSITY of WASHINGTON L17: Caches I
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Example: Direct-Mapped Cache (N = 1)

Direct-mapped: One line per set
Block Size K=8B SE

/\_/\/—\
[ [ees | [o[:[2[5]«]5Te]7]

Address of int:

[ ¥¥bits [ o..01 [ 100 |

niEnionoononn
_ ol
=252t I [ ) PLL L L L]

L] e | [o[:[2[5]« 5 e 7]

v P T =
lfind"setz E:;
Sek index
=1
10
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Example: Direct-Mapped Cache (N = 1)

Direct-mapped: One line per set ophmizt dncdl—ws
Block Size K=8B / P tor i

v thecks valid bt ‘Firgl'

lid? + tch?: = hit Address of int:
valid? Ima ch?: yes = hi o e

|
1
[ e ] PLEELE ]

block offset

11
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Example: Direct-Mapped Cache (N = 1)

Direct-mapped: One line per set
Block Size K=8B

lid? + tch? hit Address of int:
valld matchr: yes =
| ! : Foits | 0..01 | 100 ]

|
1
[ [ ] PLLE L]

block offset
int (4 B) is here
int (48) [This is why we }
i 1
AR ik can oy have want alignment!

No match? Then old line gets evi@t@% Std Qplgge# NO Unnecessary ectra
(acL\e acesses al vos j

blocke hpundanes

3/2/17
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Example: Set-Associative Cache (N = 2)

2-way: Two lines per set

Block Size K = 8 B Address of short int:

[ Fbits | o..01 [ 100]
—_

fet index=|
(] Crag ) [olalaloTalsTe 7 ] Crae_] [ol:l2TsT4]s]617] jj
ind set

||0|1|2|3|4|5|6|7| L] [eeg ||0|1|2|3|4|5|6|7|>(=

(] Crag ) [olalolaTalsTe [ ] [Crag ) [olaloTcT4lsT6]7]

(] Crag ) [olalolaTalsTe 7 ] [Crag ] [olal2TcT4lsT6]7]

13
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Example: Set-Associative Cache (N = 2)

2-way: Two lines per set

Block Size K = 8 B Address of short int:

[ ®¥bits | 0..01 [ 100]

compare both

valid? + | match: yes = hit

[ el LELLB L B Cee ) RL2les 1]

block offset

14
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Example: Set-Associative Cache (N = 2)

ol That fhis is Shwts —

2-way: Two li t deol £ for Flict
way . WO lInes per se hadeot £ less con Address of short int:
Block Size K=8B [

T
b 0..01 | 100
(compare both D L Tbits | | |

valid? + | match: yes = hit
[ Cee] LLGLIET| | Cee ] LLEGLGT]

block offset

short int (2 B)is here

No match?
* One line in set is selected for eviction and replacement
* Replacement policies: random, least recently used (LRU), ...

15
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Types of Cache Misses: 3 C’s!
“ftﬁmired "
% Compulsory (cold) miss
® Qccurs on first access to a block
« Conflict miss

= Conflict misses occur when the cache is large enough, but multiple data
objects all map to the same slot
- e.g., referencing blocks 0, 8, 0, 8, ... could miss every time
= Direct-mapped caches have more conflict misses than
N-way set-associative (where N > 1)
« Capacity miss

= QOccurs when the set of active cache blocks (the working set)

is larger than the cache (just won't fit, even if cache was fully-
associative)

= Note: Fully-associative only has Compulsory and Capacity misses

16
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Core i7: Associativity

Processor package

L3 unified cache:
8 MiB, 16-way,
AccessN30-40 cycles

L3 unified cache
(shared by all cores)

i Core 0 Core 3 : Block/line size:

: ! 64 bytes for all

| L oree

: E L1 i-cache and d-cache:
| L1 L1 L1 L1 : 32 KiB, 8-way,

i | |d-cache| |i-cache d-cache| |i-cache Access: 4 cycles
L2 unified cache:

! L2 unified cache L2 unified cache 1 256 KiB, 8-way,

: : Access: 11 cycles

slower, but

Main memory more likely
to hit 17

UNIVERSITY of WASHINGTON L17: Caches I CSE351, Winter 2017

What about writes?

« Multiple copies of data exist:
= L1, L2, possibly L3, main memory
+ What to do on a write-hit?

{Nﬁ, = Write-through: write immediately to memory and all caches in-between
o
+ What to do on a write-miss?

= Write-allocate: (“fetch on write”) load into cache, update line in cache
+ Good if more writes or reads to the location follow

= Write-back: defer write to memory until line is evicted (replaced)

+ Must track which cache lines have been modified (“dirty bit”) —s #mn
locnln fy

= No-write-allocate: (“write around”) just write immediately to memory

R

> Typical caches:

= (Write-back + Write-allocat€) usually

= Write-through + No-write-allocate, occasionally

18
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Write-back, write-allocate example

Contents of memory stored at address G

-\
Cache [G] OXBEEF lo) f——— dirty bit
%l N

tag (there is only one set in this tiny cache, so the tag is the entire block address!)

Memor F | OXCAFE | In this example we are sort of
Y x ignoring block offsets. Here a block
G | O0xBEEF | holds 2 bytes (16 bits, 4 hex digits).

Normally a block would be much
bigger and thus there would be
multiple items per block. While only
one item in that block would be
written at a time, the entire line would
be brought into cache. 19
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Write-back, write-allocate example

mov OxFACE, F

Cache | G | O0xBEEF |o| [ dirty bit
Memory FI 0xCAFE |
ol | 0xBEEF |

20
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Write-back, write-allocate example

mov OxFACE, F

Cache [F] 0xCAFE lo] ff——— dirty bit

Step 1: Bring F into cache

Memory FI 0xCAFE |

G| | 0XBEEF |

21
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Write-back, write-allocate example

mov OxFACE, F

AN
Cache |..E. | \0xFACE)| (ol f——- dirty bit

S

|
e
Step 2: Write 0xFACE
to cache only and set

dirty bit
Memory FI DxCAFE) |

Gl | 0xBEEF |

22
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Write-back, write-allocate example

mov OxFACE, F mov OxXFEED, F
Cache | [F] OxFACE [1] [ dirty bit
Write hit!
Write 0XFEED to
cache only
Memory FI 0xCAFE |
G| | 0XBEEF |

23
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Write-back, write-allocate example

mov OxXFACE, F mov OxXFEED, F mov G, $rax
Cache [ F OxXFEED [a]fe—-— dirty bit
Memory F1 1 0xCAFE |
Gl | 0xBEEF |

24
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Write-back, write-allocate example

mov OxXFACE, F mov OxXFEED, F mov G, $rax

Cache |[G] OxXBEEF lo] =——— dirty bit

1. Write F back to memory
since it is dirty

now most 2. Bring G into the cache so
Memory FI 0xFEED || vppcted  we can copy itinto $rax
G| | 0XBEEF |
25
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Where else is caching used?

« Software caches are more flexible
= File system buffer caches, browser caches, etc.
= Content-delivery networks (CDN): cache for the Internet (e.g. Netflix)

« Some design differences
= Almost always fully-associative
+ 5o, no placement restrictions
- index structures like hash tables are common (for placement)
= More complex replacement policies
« misses are very expensive when disk or network involved
« worth thousands of cycles to avoid them
= Not necessarily constrained to single “block” transfers
- may fetch or write-back in larger units, opportunistically

26
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Optimizations for the Memory Hierarchy

« Write code that has locality!
® Spatial: access data contiguously

®= Temporal: make sure access to the same data is not too far
apartin time

« How can you achieve locality?

= Adjust memory accesses in code (software) to improve miss
rate (MR)

+ Requires knowledge of both how caches work as well as your system’s
parameters

= Proper choice of algorithm
® Loop transformations

27
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Example: Matrix Multiplication

O
*

L

14
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Matrices in Memory

+ How do cache blocks fit into this scheme?

® Row major matrix in memory:

CSE351, Winter 2017

i

COLUMN of matrix (blue) is spread
among cache blocks shown in red

UNIVERSITY of WASHINGTON

Naive Matrix Multiply

(CSE351, Winter 2017

# move along rows of A

for (i = 0; 1 < n; i++)
# move along columns of B
for (j = 0; j < n; J++)

for (k = 0; k < n; k++)

# EACH k loop reads row of A, col of B
# Also read & write c(i,j) n times

cli*n+j] D) ali*n+k] * DIK*n+I]; aces patlen

check menn

DA (™Y @ Rend © Read @Read
Clij) C(ij) Ali?)
(] — (] + | — X B(:,j)

3/2/17
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Cache Miss Analysis (Naive)

+ Scenario Parameters:
® Square matrix (nXn), elements are oloublesM T,
H
® Cache block size K=64 B = 8 doubles J

® Cache size C K n (much smaller than n) f Aoubes in cache block

n/8 misses
« First iteration: ;

n Ian . = X o
" — 4+ N =-—misses o

8 8

A B

= Afterwards in cache:

(schematic) = X

[ |

8 doubles wide

UNIVERSITY of WASHINGTON
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Cache Miss Analysis (Naive)

+ Scenario Parameters:
® Square matrix (nXn), elements are doubles
® Cache block size K=64 B = 8 doubles
® Cache size C « n (much smaller than n)

« Other iterations:

= Again: s = X
on .
n +n= o misses ;
8 8 Y 8 wide
9 9
. n
+ Total misses: 5 Xn? §n3

A

once per element

3/2/17
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Linear Algebra to the Rescue (1)

« Can get the same result of a matrix multiplication by
splitting the matrices into smaller submatrices
(matrix “blocks”)

« For example, multiply two 4x4 matrices:

A1 Q2 QA3 Q4
Az1 Ay Qzz  Qpy
A3y 3z Qg3 A3y
Qg1 QAqp Quz  Qyg

(AllBll +A12321) (AllBIZ +A12BZZ)
(A21B11 +A22B21) (A21312 +’422322)

— All A12

A= =
A21 A22

], with B defined similarly.

AB:[

UNIVERSITY of WASHINGTON CSE351, W

Linear Algebra to the Rescue (2)

C11 C12» C13 C14 A11 §A12 A13 A14 B11

Ca; !—Ezz Cas | Ca4 @ Q @ Agd By

C31 C32 C43 C34 A31 §A32 A33 A34 B32

Cu1{Cup | Cy3{ Cyy Agr | Asp | Agz 1 Agag B Al Bz | Bag

Matrices of size nXn, split into 4 blocks of size r (n=4r)

[}

Cpo = AyiBiy + ApByy + AyByy + AyyByy = 2 Ay *By,

« Multiplication operates on small “block” matrices
= Choose size so that they fit in the cache!
= This technique called “cache blocking”

3/2/17
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Blocked Matrix Multiply

« Blocked version of the naive algorithm:

# move by rxr BLOCKS now
for (i = 0; i < n; 1 += r)

ted oot
for (3 = 0; § < n; j += r) 5 "‘Km;r‘ bt lead!
for (k = 0; k < n; k += 1) lest ) fder o8¢
# block matrix multiplication s

for (ib = i; ib < i+r; ib++)
for (jb = j; jb < jtr; jb++)
for (kb = k; kb < k+r; kb++)
clib*n+jb] += a[ib*n+kb]*b[kb*n+ib];

® 7 = block matrix size (assume r divides n evenly)

UNIVERSITY of WASHINGTON

L17: Caches III
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Cache Miss Analysis (Blocked)

. Mu HR HHAYW MR R WAH AR
+ Scenario Parameters: voo. [TUTTTTY ot (lh“uJ
HH Y

® Cache block size K= 64 B = 8 doubles ( '12j2
= Cache size C « n (much smaller than n) %ﬂ N
# = Three blocks M (rxr) fit into cache §r2 <C AN |
2 i aneas n/r blocks
r2elemen

7

. /\ . . >
< F|rst¢(block) iteration:
= 12 /8 misses per block
= 2n/rxr?/8 = nr/4
\

n/r blocks in row and column

= Afterwards in cache |
(schematic) — % i

3/2/17
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Cache Miss Analysis (Blocked)

« Scenario Parameters:
® Cache block size K=64 B = 8 doubles
® Cache size C < n (much smaller than n)
® Three blocks M (rxr) fit into cache: 3r2 < C

n/r blocks

« Other (block)
. . [ |
iterations: = x|
= Same as first iteration
= 2n/rxr?/8 = nr/4

« Total misses:
= nr/4x(n/r)? = n3/(4r)

UNIVERSITY of WASHINGTON L17: Caches I
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Matrix Multiply Summary

+ Naive: (9/8) xn?

- Blocked: 1/(4r) xn3
= |fr=8, differenceis4*8*9/8 =36x
= |fr =16, differenceis 4*16 * 9/8 = 72x

« Blocking optimization only works if the blocks fit in the cache
= Suggests largest possible block size up to limit 3r2 < C

- Matrix multiplication has inherent temporal locality:
= |nput data: 3n2, computation 2n3
= Every array element used O(n) times!
= But program has to be written properly

38
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Matrix Multiply Visualization

« Heren =100, C =32KiB, r =30
Naive:

B o

Cache misses: 551888

Cache misses: 53,888
= 1,020,000
cache misses

= 90,000
cache misses

CSE351, Winter 2017

Cache-Friendly Code

+ Programmer can optimize for cache performance
®= How data structures are organized
® How data are accessed
+ Nested loop structure
+ Blocking is a general technique
« All systems favor “cache-friendly code”
= Getting absolute optimum performance is very platform
specific
+ Cache size, cache block size, associativity, etc.
® Can get most of the advantage with generic code

reve - Keep working set reasonably small (temporal locality)
ro\es . « Use small strides (spatial locality)
Y

+ Focus on inner loop code

UNIVERSITY of WASHINGTON L17: Caches III CSE351, Winter 2017

40
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Core i7 Haswell
H 2.1 GHz
The Memory Mountain o eache
256 KB L2 cache
Aggressive T 8 MB L3 cache

prefetching ~ —64 B block size
< 16000
S | —
&, 14000
fF | P
L2 12000
>§ 10000 LU$ fize exceeled
3
29 .
§ £ 8000 1 Ridges
£8 ‘ of temporal
g :
6000 4‘ 7 locality
4000 -
(2] 52 ex(eed ed
Slopes ]

of spatial e
locality .- T 128k
s5 | ) 512k
a7 “am ™ Working daf set
~— T 4] .
Stride (x8 bytes) SIS il 8'"/ Size (byted) 0 IS SiZe
c}cr.n:u'rnj sroihaj |b(a\]'*y S11128m Vs

i«(veaiinj

41
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Learning About Your Machine

+ Linux:
" lscpu
= |s /sys/devices/system/cpu/cpu0/cache/index0/
« Ex: cat /sys/devices/system/cpu/cpuO/cache/index*/size
" cat /proc/cpuinfo | grep cache | sort | uniqg
+ Windows:
" wmic memcache get <query> (all valuesin KB)

" Ex: wmic memcache get MaxCacheSize

+« Modern processor specs: http://www.7-cpu.com/

3/2/17
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