
3/2/17

1

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L17: Caches III

Caches	III
CSE	351	Winter	2017

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L17: Caches III

Administrivia

vLuis	is	sad	he	can’t	be	here	this	morning	L

2

3/2/17

2

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L17: Caches III

Example	Placement

v Where	would	data	from	address	0x1833 be	placed?
§ Binary:		0b 0001 1000 0011 0011

3

𝐈 =	?	

block	size: 16	B
capacity: 8	blocks
address: 16	bits

Set Tag Data
0
1
2
3
4
5
6
7

Direct-mapped
Set Tag Data

0

1

2

3

Set Tag Data

0

1

2-way	set	associative 4-way	set	associative

Tag	(𝐓) Offset	(𝐎)𝐀-bit	address: Index	(𝐈)
𝐈 =	log(C/K/N 𝐎 =	log(K𝐓 =	𝐀–𝐈–𝐎

𝐈 =	?	 𝐈 =	?	

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L17: Caches III

Example	Placement

v Where	would	data	from	address	0x1833 be	placed?
§ Binary:		0b 0001 1000 0011 0011

4

𝐈 =	3	

block	size: 16	B
capacity: 8	blocks
address: 16	bits

Set Tag Data
0
1
2
3
4
5
6
7

Direct-mapped
Set Tag Data

0

1

2

3

Set Tag Data

0

1

2-way	set	associative 4-way	set	associative

Tag	(𝐓) Offset	(𝐎)𝐀-bit	address: Index	(𝐈)
𝐈 =	log(C/K/N 𝐎 =	log(K𝐓 =	𝐀–𝐈–𝐎

𝐈 =	2	 𝐈 =	1	

3/2/17

3

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L17: Caches III

Block	Replacement
v Any empty	block	in	the	correct	set	may	be	used	to	store	block
v If	there	are	no	empty	blocks,	which	one	should	we	replace?

§ No	choice	for	direct-mapped	caches
§ Caches	typically	use	something	close	to	least	recently	used	(LRU)

(hardware	usually	implements	“not	most	recently	used”)

5

Set Tag Data
0
1
2
3
4
5
6
7

Direct-mapped
Set Tag Data

0

1

2

3

Set Tag Data

0

1

2-way	set	associative 4-way	set	associative

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L17: Caches III

Cache	Puzzle	#2

v What	can	you	infer	from	the	following	behavior?
§ Cache	starts	empty,	also	known	as	a	cold	cache
§ Access	(addr:	hit/miss)	stream:

• (10:	miss),	(12:	miss),	(10:	miss)

v Associativity?

v Number	of	sets?

6

3/2/17

4

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L17: Caches III

General	Cache	Organization	(S,	N,	K)

7

N =	blocks/lines	per	set

S =	#	sets
=	2𝐈

set

“line”	(block	plus
management	bits)

0 1 2 B-1tagV

valid	bit K =	bytes	per	block

Cache	size:
C = S×N×K data	bytes
(doesn’t	include	V	or	Tag)

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L17: Caches III

Notation	Changes

v We	are	using	different	variable	names	from	previous	
quarters
§ Please	be	aware	of	this	when	you	look	at	past	exam	
questions	or	are	watching	videos

Variable This	Quarter Previous	Quarters

Block	size K B

Cache	size C ---

Associativity N E

Address	width 𝐀 m

Tag	field	width 𝐓 t

Index	field	width 𝐈 k,	s

Offset	field	width 𝐎 n,	b

Number	of	Sets S S
8

3/2/17

5

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L17: Caches III

Cache	Read

9

0 1 2 B-1tagv

𝐓 bits 𝐈 bits 𝐎 bits
Address	of	byte	in	memory:

tag set
index

block
offset

data	begins	at	this	offset

1) Locate	set
2) Check	if	any	line	in	set

has	matching	tag
3) Yes	+	line	valid:	hit
4) Locate	data	starting

at	offset

valid	bit

S =	#	sets
=	2𝐈

N =	blocks/lines	per	set

K =	bytes	per	block

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L17: Caches III

Example:		Direct-Mapped	Cache	(N =	1)

10

Direct-mapped:		One	line	per	set
Block	Size	K =	8	B

𝐓 bits 0…01 100
Address	of	int:

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

find	set

S =	2𝐈 sets

3/2/17

6

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L17: Caches III

Example:		Direct-Mapped	Cache	(N =	1)

11

𝐓 bits 0…01 100
Address	of	int:

0 1 2 7tagv 3 654

match?:	yes	=	hitvalid?			+

block	offset

Direct-mapped:		One	line	per	set
Block	Size	K =	8	B

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L17: Caches III

Example:		Direct-Mapped	Cache	(N =	1)

12

𝐓 bits 0…01 100
Address	of	int:

0 1 2 7tagv 3 654

match?:	yes	=	hitvalid?			+

int (4	B)	is	here

block	offset

No	match? Then	old	line	gets	evicted	and	replaced

This	is	why	we	
want	alignment!

Direct-mapped:		One	line	per	set
Block	Size	K =	8	B

3/2/17

7

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L17: Caches III

Example:		Set-Associative	Cache	(N =	2)

13

𝐓 bits 0…01 100
Address	of	short int:

find	set

0 1 2 7tagv 3 6540 1 2 7tagv 3 654

0 1 2 7tagv 3 6540 1 2 7tagv 3 654

0 1 2 7tagv 3 6540 1 2 7tagv 3 654

0 1 2 7tagv 3 6540 1 2 7tagv 3 654

2-way:		Two	lines	per	set
Block	Size	K =	8	B

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L17: Caches III

0 1 2 7tagv 3 6540 1 2 7tagv 3 654

Example:		Set-Associative	Cache	(N =	2)

14

𝐓 bits 0…01 100
compare	both

valid?		+	 match:	yes	=	hit

block	offset

tag

2-way:		Two	lines	per	set
Block	Size	K =	8	B Address	of	short int:

3/2/17

8

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L17: Caches III

0 1 2 7tagv 3 6540 1 2 7tagv 3 654

Example:		Set-Associative	Cache	(N =	2)

15

𝐓 bits 0…01 100

valid?		+	 match:	yes	=	hit

block	offset

short int (2	B)	is	here

No	match?
• One	line	in	set	is	selected	for	eviction	and	replacement
• Replacement	policies:	random,	least	recently	used	(LRU),	…

compare	both

Address	of	short int:
2-way:		Two	lines	per	set
Block	Size	K =	8	B

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L17: Caches III

Types	of	Cache	Misses:	3	C’s!
v Compulsory (cold)	miss

§ Occurs	on	first	access	to	a	block

v Conflict miss
§ Conflict	misses	occur	when	the	cache	is	large	enough,	but	multiple	data	

objects	all	map	to	the	same	slot
• e.g.,	referencing	blocks	0,	8,	0,	8,	...	could	miss	every	time

§ Direct-mapped	caches	have	more	conflict	misses	than
N-way	set-associative	(where	N >	1)

v Capacity miss
§ Occurs	when	the	set	of	active	cache	blocks	(the	working	set)	

is	larger	than	the	cache	(just	won’t	fit,	even	if	cache	was	fully-
associative)

§ Note: Fully-associative only	has	Compulsory	and	Capacity	misses

16

3/2/17

9

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L17: Caches III

Core	i7:		Associativity

17

Regs

L1	
d-cache

L1	
i-cache

L2	unified	cache

Core	0

Regs

L1	
d-cache

L1	
i-cache

L2	unified	cache

Core	3

…

L3	unified	cache
(shared	by	all	cores)

Main	memory

Processor	package

slower,	but
more	likely
to	hit

Block/line	size:	
64	bytes	for	all

L1	i-cache	and	d-cache:
32	KiB,		8-way,	
Access:	4	cycles

L2	unified	cache:
256	KiB,	8-way,	
Access:	11	cycles

L3	unified	cache:
8	MiB,	16-way,
Access:	30-40	cycles

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L17: Caches III

What	about	writes?
v Multiple	copies	of	data	exist:

§ L1,	L2,	possibly	L3,	main	memory

v What	to	do	on	a	write-hit?
§ Write-through: write	immediately	to	memory	and	all	caches	in-between
§ Write-back: defer	write	to	memory	until	line	is	evicted	(replaced)

• Must	track	which	cache	lines	have	been	modified	(“dirty	bit”)

v What	to	do	on	a	write-miss?
§ Write-allocate: (“fetch	on	write”)	load	into	cache,	update	line	in	cache

• Good	if	more	writes	or	reads	to	the	location	follow
§ No-write-allocate: (“write	around”)	just	write	immediately	to	memory

v Typical	caches:
§ Write-back	+	Write-allocate,	usually
§ Write-through	+	No-write-allocate,	occasionally

18

3/2/17

10

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L17: Caches III

Write-back,	write-allocate	example

0xBEEFCache

Memory

G

0xCAFE

0xBEEF

0

F

G

dirty	bit

tag	(there	is	only	one	set	in	this	tiny	cache,	so	the	tag	is	the	entire	block	address!)

In	this	example	we	are	sort	of	
ignoring	block	offsets.	Here	a	block
holds	2	bytes	(16	bits,	4	hex	digits).	

Normally	a	block	would	be	much	
bigger	and	thus	there	would	be	
multiple	items	per	block.		While	only	
one	item	in	that	block	would	be	
written	at	a	time,	the	entire	line	would	
be	brought	into	cache.

Contents	of	memory	stored	at	address	G

19

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L17: Caches III

Write-back,	write-allocate	example

0xBEEFCache

Memory

G

0xCAFE

0xBEEF

0

F

G

mov 0xFACE, F

dirty	bit

20

3/2/17

11

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L17: Caches III

0xBEEFU 0

Write-back,	write-allocate	example

0xCAFECache

Memory

F

0xCAFE

0xBEEF

F

G

dirty	bit0xCAFE 0

Step	1:	Bring	F	into	cache

21

mov 0xFACE, F

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L17: Caches III

0xBEEFU 0

Write-back,	write-allocate	example

0xCAFECache

Memory

F

0xCAFE

0xBEEF

F

G

dirty	bit0xFACE 1

Step	2:	Write	0xFACE
to	cache	only	and	set
dirty	bit

22

mov 0xFACE, F

3/2/17

12

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L17: Caches III

0xBEEFU 0

Write-back,	write-allocate	example

0xCAFECache

Memory

F

0xCAFE

0xBEEF

F

G

mov 0xFEED, F

dirty	bit0xFACE 1

Write	hit!
Write	0xFEED to	

cache	only

23

mov 0xFACE, F

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L17: Caches III

0xBEEFU 0

Write-back,	write-allocate	example

0xCAFECache

Memory

F

0xCAFE

0xBEEF

F

G

mov G, %rax

dirty	bit0xFEED 1

24

mov 0xFEED, Fmov 0xFACE, F

3/2/17

13

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L17: Caches III

Write-back,	write-allocate	example

0xBEEFCache

Memory

G

0xFEED

0xBEEF

0

F

G

dirty	bit

1.	Write	F	back	to	memory	
since	it	is	dirty

2.	Bring	G	into	the	cache	so	
we	can	copy	it	into	%rax

25

mov G, %raxmov 0xFEED, Fmov 0xFACE, F

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L17: Caches III

Where	else	is	caching	used?
v Software	caches	are	more	flexible

§ File	system	buffer	caches,	browser	caches,	etc.
§ Content-delivery	networks	(CDN):	cache	for	the	Internet	(e.g.	Netflix)

v Some	design	differences
§ Almost	always	fully-associative

• so,	no	placement	restrictions
• index	structures	like	hash	tables	are	common	(for	placement)

§ More	complex	replacement	policies
• misses	are	very	expensive	when	disk	or	network	involved
• worth	thousands	of	cycles	to	avoid	them

§ Not	necessarily	constrained	to	single	“block”	transfers
• may	fetch	or	write-back	in	larger	units,	opportunistically

26

3/2/17

14

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L17: Caches III

Optimizations	for	the	Memory	Hierarchy

v Write	code	that	has	locality!
§ Spatial:		access	data	contiguously
§ Temporal:		make	sure	access	to	the	same	data	is	not	too	far	
apart	in	time

v How	can	you	achieve	locality?
§ Adjust	memory	accesses	in	code (software)	to	improve	miss	
rate	(MR)
• Requires	knowledge	of	both how	caches	work	as	well	as	your	system’s	
parameters

§ Proper	choice	of	algorithm
§ Loop	transformations

27

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L17: Caches III

Example:		Matrix	Multiplication

C

= ×

A B

ai* b*j

cij

3/2/17

15

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L17: Caches III

Matrices	in	Memory

v How	do	cache	blocks	fit	into	this	scheme?
§ Row	major	matrix	in	memory:

Cache	
blocks

COLUMN of	matrix	(blue)	is	spread	
among	cache	blocks	shown	in	red	

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L17: Caches III

Naïve	Matrix	Multiply

move along rows of A
for (i = 0; i < n; i++)
move along columns of B
for (j = 0; j < n; j++)
EACH k loop reads row of A, col of B
Also read & write c(i,j) n times
for (k = 0; k < n; k++)
c[i*n+j] += a[i*n+k] * b[k*n+j];

= + ×
C(i,j) A(i,:)

B(:,j)
C(i,j)

3/2/17

16

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L17: Caches III

Cache	Miss	Analysis	(Naïve)

v Scenario	Parameters:
§ Square	matrix	(𝑛×𝑛),	elements	are	doubles
§ Cache	block	size	K =	64	B	=	8	doubles
§ Cache	size	C ≪ 𝑛 (much	smaller	than	𝑛)

v First	iteration:
§ 4

5
+ 𝑛 = 64

5
misses

§ Afterwards	in	cache:
(schematic)

×=

×=
8	doubles	wide

𝑛
m
isses

𝑛/8misses

Ignoring	
matrix	c

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L17: Caches III

Cache	Miss	Analysis	(Naïve)

v Scenario	Parameters:
§ Square	matrix	(𝑛×𝑛),	elements	are	doubles
§ Cache	block	size	K =	64	B	=	8	doubles
§ Cache	size	C ≪ 𝑛 (much	smaller	than	𝑛)

v Other	iterations:
§ Again:
4
5
+ 𝑛 = 64

5
misses

v Total	misses:		64
5
×𝑛2 = 6

5
𝑛3

8	wide

once	per	element

×=

Ignoring	
matrix	c

3/2/17

17

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L17: Caches III

Linear	Algebra	to	the	Rescue	(1)

v Can	get	the	same	result	of	a	matrix	multiplication	by	
splitting	the	matrices	into	smaller	submatrices	
(matrix	“blocks”)

v For	example,	multiply	two	4×4	matrices:

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L17: Caches III

Linear	Algebra	to	the	Rescue	(2)

Matrices	of	size	𝑛×𝑛,	split	into	4	blocks	of	size	𝑟 (𝑛=4𝑟)

C22 =	A21B12 +	A22B22 +	A23B32 +	A24B42	 =		åk A2k*Bk2

v Multiplication	operates	on	small	“block”	matrices
§ Choose	size	so	that	they	fit	in	the	cache!
§ This	technique	called	“cache	blocking”

C11 C12 C13 C14

C21 C22 C23 C24

C31 C32 C43 C34

C41 C42 C43 C44

A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A144

B11 B12 B13 B14

B21 B22 B23 B24

B32 B32 B33 B34

B41 B42 B43 B44

3/2/17

18

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L17: Caches III

Blocked	Matrix	Multiply
v Blocked	version	of	the	naïve	algorithm:

§ 𝑟 =	block	matrix	size	(assume	𝑟 divides	𝑛 evenly)

move by rxr BLOCKS now
for (i = 0; i < n; i += r)
for (j = 0; j < n; j += r)
for (k = 0; k < n; k += r)
block matrix multiplication

for (ib = i; ib < i+r; ib++)

for (jb = j; jb < j+r; jb++)

for (kb = k; kb < k+r; kb++)

c[ib*n+jb] += a[ib*n+kb]*b[kb*n+jb];

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L17: Caches III

Cache	Miss	Analysis	(Blocked)

v Scenario	Parameters:
§ Cache	block	size	K =	64	B	=	8	doubles
§ Cache	size	C ≪ 𝑛 (much	smaller	than	𝑛)
§ Three	blocks						(𝑟×𝑟)	fit	into	cache:		3𝑟2 < 𝐶

v First	(block)	iteration:
§ 𝑟(/8misses	per	block
§ 2𝑛/𝑟×𝑟2/8 = 𝑛𝑟/4

§ Afterwards	in	cache
(schematic)

𝑛/𝑟 blocks𝑟2 elements	per	block,	8	per	cache	block

𝑛/𝑟 blocks	in	row	and	column

Ignoring	
matrix	c

×=

×=

3/2/17

19

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L17: Caches III

Cache	Miss	Analysis	(Blocked)

v Scenario	Parameters:
§ Cache	block	size	K =	64	B	=	8	doubles
§ Cache	size	C ≪ 𝑛 (much	smaller	than	𝑛)
§ Three	blocks						(𝑟×𝑟)	fit	into	cache:		3𝑟2 < 𝐶

v Other	(block)	
iterations:
§ Same	as	first	iteration
§ 2𝑛/𝑟×𝑟2/8 = 𝑛𝑟/4

v Total	misses:
§ 𝑛𝑟/4×(𝑛/𝑟)2 = 𝑛3/(4𝑟)

Ignoring	
matrix	c

𝑛/𝑟 blocks

×=

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L17: Caches III

Matrix	Multiply	Summary
v Naïve: (9/8) ×𝑛3

v Blocked: 1/(4𝑟) ×𝑛3
§ If	𝑟 =	8,				difference	is	4*8	*	9/8			=	36x
§ If	𝑟 =	16,		difference	is	4*16	*	9/8	=	72x

v Blocking	optimization	only	works	if	the	blocks	fit	in	the	cache
§ Suggests	largest	possible	block	size	up	to	limit	3𝑟2 ≤ 𝐶

v Matrix	multiplication	has	inherent	temporal	locality:
§ Input	data:	3𝑛2,	computation	2𝑛3

§ Every	array	element	used	𝑂(𝑛) times!
§ But	program	has	to	be	written	properly

38

3/2/17

20

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L17: Caches III

Matrix	Multiply	Visualization

v Here	𝑛 =	100,	𝐶 =	32	KiB,	𝑟 =	30
Naïve:

Blocked:

≈	1,020,000
cache	misses

≈	90,000
cache	misses

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L17: Caches III

Cache-Friendly	Code
v Programmer	can	optimize	for	cache	performance

§ How	data	structures	are	organized
§ How	data	are	accessed

• Nested	loop	structure
• Blocking	is	a	general	technique

v All	systems	favor	“cache-friendly	code”
§ Getting	absolute	optimum	performance	is	very	platform	
specific
• Cache	size,	cache	block	size,	associativity,	etc.

§ Can	get	most	of	the	advantage	with	generic	code
• Keep	working	set	reasonably	small	(temporal	locality)
• Use	small	strides	(spatial	locality)
• Focus	on	inner	loop	code

40

3/2/17

21

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L17: Caches III

The	Memory	Mountain

41

128m
32m

8m
2m

512k
128k

32k
0

2000

4000

6000

8000

10000

12000

14000

16000

s1
s3

s5
s7

s9
s11

Size	(bytes)

Re
ad

	th
ro
ug
hp

ut
	(M

B/
s)

Stride	(x8	bytes)

Core	i7	Haswell
2.1	GHz
32	KB	L1	d-cache
256	KB	L2	cache
8	MB	L3	cache
64	B	block	size

Slopes	
of	spatial	
locality

Ridges	
of	temporal	
locality

L1

Mem

L2

L3

Aggressive	
prefetching

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L17: Caches III

Learning	About	Your	Machine

v Linux:
§ lscpu

§ ls	/sys/devices/system/cpu/cpu0/cache/index0/
• Ex:		cat	/sys/devices/system/cpu/cpu0/cache/index*/size

§ cat /proc/cpuinfo | grep cache | sort | uniq

v Windows:
§ wmic memcache get <query> (all	values	in	KB)
§ Ex:		wmic memcache get MaxCacheSize

v Modern	processor	specs:		http://www.7-cpu.com/

