W UNIVERSITY of WASHINGTON

L08: x86 Programming I

CSE351, Winter 2017

x86 Programming |

CSE 351 Winter 2017

SKATING UPHILL LIKE THIs 1S

AMAZING. YEARS OF GLIDING P

DOWNHILL AND PUSHING
UPHILL, ANDNOW SUDDENLY
ITS GLIDING BOTH WAYS,

NU

w/

IT'S LIKE GOING FROM C TOo
PYTHON. YOU DON'T REALIZE
HOW MUCH TIME YOU WERE
SPENDING ON THE BORING

° PARTS UNTIL YOU DON'T HAVE

e TO 00 THEM ANYMORE.

TCODING C OR
PSSEMBLY MAKES YOU
ABETTER PROGRANMER.

MA
PARTS BUILD CHARACTER.

© ||\

YEAH...BUT IT
DEPENDS HOW YoU
WANT TO SPEND YOUR
LIFE. SEE, MY
PHILOSOPHY 1S —

http://xkcd.com/409/

W UNIVERSITY of WASHINGTON L08: x86 Programming I CSE351, Winter 2017

Administrivia

« Lab 2 released!
= Da bomb!

W UNIVERSITY of WASHINGTON L08: x86 Programming I CSE351, Winter 2017

Memory & data
Roa d ma p Integers & floats
. Machine code & C
C: Java:
x86 assembly
car *c = malloc(sizeof(car)); Car ¢ = new Car(); Procedures & stacks
c->miles = 100; c.setMiles(100); Arrays & structs
c->gals = 17; c.setGals(17);
- _ Memory & caches
float mpg = get mpg(c); float mpg =
free(c); c.getMPG(); PI.’OCESSES
—— — Virtual memory
Assembly get_mpg: Memory allocation
. pushq %rbp Java vs. C
language: movq %rsp, %rbp
i;;)pq %rbp
ret I

Machine 0111010000011000
, 100011010000010000000010
code: 1000100111000010
110000011111101000011111
Computer

system:

W UNIVERSITY of WASHINGTON L08: x86 Programming I

x86 Topics for Today

» Registers
» Move instructions and operands
» Arithmetic operations

<~ Memory addressing modes
» swap example

CSE351, Winter 2017

W UNIVERSITY of WASHINGTON

CSE351, Winter 2017

What is a Register?

« A location in the CPU that stores a small amount of

data, which can be accessed very quickly (once every
clock cycle)

+ Registers have names, not addresses
" |n assembly, they start with % (e.g., $rsi)

+» Registers are at the heart of assembly programming

" They are a precious commodity in all architectures, but
especially x86

W UNIVERSITY of WASHINGTON

x86-64 Integer Registers — 64 bits wide

LO08: x86 Programming I

CSE351, Winter 2017

$rax Seax %$r8 sr8d

$rbx 2ebx $r9 $rod

$rcex %ecx $rl0 sr10d
$rdx $edx srll sr1ld
$rsi %esi $rl2 sri12d
$rdi $edi $rl3 sr13d
3rsp %esp srl4 $rlad
srbp %ebp 3rl5 $r15d

= Can reference low-order 4 bytes (also low-order 2 & 1 bytes)

W UNIVERSITY of WASHINGTON L08: x86 Programming I CSE351, Winter 2017

Some History: IA32 Registers — 32 bits wide

—~ $

$eax Fax %ah $al accumulate
secx Cx %ch gcl counter
2
S | |%edx 9dx [%dh 5d1 data
Q<
S %$ebx $bx $bh $bl base
3,
sesi %si source index
(o) - o = . . .
Sedi sdi destination index
-
%esp 3sp stack pointer
%ebp sbp base pointer
\)
Y
16-bit virtual registers Name Origin

(backwards compatibility) (mostly obsolete)

W UNIVERSITY of WASHINGTON L08: x86 Programming I

x86-64 Assembly Data Types

’0

“Integer” data of 1, 2, 4, or 8 bytes
= Data values
= Addresses (untyped pointers)

» Floating point data of 4, 8, 10 or 2x8 or 4x4 or 8x2
= Different registers for those (e.g. $xmm1, $ymm2)

= Come from extensions to x86 (SSE, AVX, ...)

= Probably won’t have time to get into these ®

« No aggregate types such as arrays or structures
= Just contiguously allocated bytes in memory

< TwO common syntaxes

/
*

= “AT&T”: used by our course, slides, textbook, gnu tools, ...

= “Intel”: used by Intel documentation, Intel tools, ...
= Must know which you’re reading

CSE351, Winter 2017

W UNIVERSITY of WASHINGTON CSE351, Winter 2017

Three Basic Kinds of Instructions

1) Transfer data between memory and register

" [oad data from memory into register

- $reg = Mem[address] Remember: Memory
is indexed just like an
array of bytes!

= Store register data into memory
- Meml[address] = $reg

2) Perform arithmetic operation on register or memory
data

"o = a + b; Zz = X <L y; 1 =h & g;

3) Control flow: what instruction to execute next
" Unconditional jumps to/from procedures
" Conditional branches

W UNIVERSITY of WASHINGTON L08: x86 Programming I CSE351, Winter 2017

Operand types

« Immediate: Constant integer data srax
= Examples: $0x400, $-533 $rcx
= Like C literal, but prefixed with '$ 2 rdx
" Encoded with 1, 2, 4, or 8 bytes -
depending on the instruction srbx
+~ Register: 1 of 16 integer registers srsi
" Examples: $rax, %$rl3 srdi
= But $rsp reserved for special use Srsp

= QOthers have special uses for particular -
instructions srbp

+ Memory: Consecutive bytes of memory >N

(o)

at a computed address
= Simplest example: (%rax)

" Various other “address modes”
10

W UNIVERSITY of WASHINGTON CSE351, Winter 2017

Moving Data

+ General form: mov source, destination
" Missing letter () specifies size of operands

" Note that due to backwards-compatible support for 8086
programs (16-bit machines!), “word” means 16 bits = 2 bytes
In X86 instruction names

= |ots of these in typical code

» movb src, dst « movl src, dst
= Move 1-byte “byte” " Move 4-byte “long word”
% MOVw Src, dst < movqg src, dst

*" Move 2-byte “word” " Move 8-byte “quad word”

11

W UNIVERSITY of WASHINGTON L08: x86 Programming I CSE351, Winter 2017

movq Operand Combinations

Source Dest Src, Dest C Analog
4 Reg movg $0x4, S%Srax var a = 0x4;
Imm
Mem movg $-147, (%rax) *p a = -147;
movq< Reg Reg movg %rax, Srdx var d = var_a;
Mem movg $rax, (%rdx) *p d = var a;
KIVIem Reg movg (%rax), %rdx var d = *p a;

+» Cannot do memory-memory transfer with a single
instruction

" How would you do it?

12

W UNIVERSITY of WASHINGTON

Memory

Addresses
" Ox7FFFD024C3DC

Big
= ~8GiB

Slow
= ~50-100 ns

Dynamic

= Can “grow” as needed
while program runs

VS.

VS.

VS.

VS.

VS.

CSE351, Winter 2017

Registers

Names

Srdi

Small
(16 x 8 B) = 128 B

Fast

sub-nanosecond timescale

Static

fixed number in hardware

13

W UNIVERSITY of WASHINGTON L08: x86 Programming I CSE351, Winter 2017

Some Arithmetic Operations

Binary (two-operand) Instructions:

- [Maxim“mf“e] m

memory operand addqg src, dst dst=dst+src (dst+=src)
" Beware argument subg src, dst dst=dst—src

order! imulq src, dst dst=dst*src signed mult
® No distinction sarq src, dst dst=dst>>src Arithmetic
between signed shrq src, dst dst=dst>>src Logical
and unsigned shlq src, dst dst=dst<<src (sameassalq)
- Only arithmetic vs. xXorq src, dst dst=dst”src
logical shifts andq src, dst dst=dst& src
= How do you orq src, dst dst=dst | src
implement t operand size specifier

“vr3 = rl1 + r2”?

14

CSE351, Winter 2017

W UNIVERSITY of WASHINGTON

Some Arithmetic Operations

+» Unary (one-operand) Instructions:

__Format__| Computation

incqg dst dst=dst+1 increment
decqg dst dst=dst—1 decrement
negq dst dst =—dst negate

notq dst dst = ~dst bitwise complement

«» See CSPP Section 3.5.5 for more instructions:
mulqg, cqto, 1divqg, divg

15

W UNIVERSITY of WASHINGTON

Arithmetic Example

L08: x86 Programming I

CSE351, Winter 2017

Cnegiter | usels)

1st argument (x)
2" argument (y)

return value

srdi
: : $rsi
long simple arith(long x, long vy)
{ srax
long t1 = x + y;
long t2 = tl1 * 3;
return t2;
} <k~\\\“ﬁ§
y t=
y*:
long

return r;

r = Vs

simple arith:
addg srdi,
imulg $3,
movq $rsi,
ret

5rsi
5rsi
Srax

16

W UNIVERSITY of WASHINGTON

Example of Basic Addressing Modes

L08: x86 Programming I

{
long t0 = *xp;
long tl = *yp;

void swap (long tgp, long *yp)

*Xp = tl;
*yp = tO0;

}

swap:
movqg (srdi), Srax
movqg (%rsi), %Srdx
movqg srdx, (%rdi)
movqg srax, (%rsi)
ret

CSE351, Winter 2017

17

W UNIVERSITY of WASHINGTON L08: x86 Programming I CSE351, Winter 2017

Understanding swap ()

void swap (long *xp, long *yp) Registers Memory
{ .
long t0 = *xp; crdl bl
long tl = *yp; Srsi o«
*xp = tl; - =
*yp _ tO; s raXx
} Srdx
swap: (Register Variable |
movqg (srdi), Srax srdi & xp
movq (%rs1i), 6rclix srsi & yp
movqg Srdx, (%rdi)]
movqg %rax, (%rsi) srax < t0
ret k%JCC]_X 4 tl)

18

W UNIVERSITY of WASHINGTON

L08: x86 Programming I

Understanding swap ()

Registers Memory Word
Address
Srdi 0x120 123 | 0x120
srsi| 0x100 0x118
o 0x110
Srax
0x108
srdx
456 | 0x100
swap:
movqg (%rdi), %rax # t0 = *xp
movg (%rsi), %rdx # tl = *yp
movqg S$rdx, (%5rdi) # *xp tl
movqg %$rax, (%rsi) # *yp = tO0
ret

CSE351, Winter 2017

19

W UNIVERSITY of WASHINGTON

L08: x86 Programming I

Understanding swap ()

Registers Memory Word
Address
Srdi 0x120 123 | 0x120
srsi| 0x100 0x118
11
$rax 123 Ox110
0x108
srdx
456 | 0x100
swap:
movqg (%rdi), %$rax # t0 = *xp
movg (%rsi), %rdx # tl = *yp
movqg S$rdx, (%5rdi) # *xp tl
movqg %$rax, (%rsi) # *yp = tO0
ret

CSE351, Winter 2017

20

W UNIVERSITY of WASHINGTON

L08: x86 Programming I

Understanding swap ()

Registers Memory Word
Address
Srdi 0x120 123 | 0x120
srsi| 0x100 0x118
$rax 123 Ox110
0x108
Srdx 456 [e—
456 | 0x100
swap:
movqg (%rdi), %rax # t0 = *xp
movg (%rsi), %rdx # tl = *yp
movqg S$rdx, (%5rdi) # *xp tl
movqg %$rax, (%rsi) # *yp = tO0
ret

CSE351, Winter 2017

21

W UNIVERSITY of WASHINGTON

L08: x86 Programming I

Understanding swap ()

Registers Memory Word
Address
$rdi 0x120 456 | 0x120
srsi| 0x100 0x118
11
$rax 123 Ox110
0x108
Srdx 456
456 | 0x100
swap:
movqg (%rdi), %rax # t0 = *xp
movg (%rsi), %rdx # tl = *yp
movqg S$rdx, (%rdi) # *xp tl
movqg %$rax, (%rsi) # *yp = tO0
ret

CSE351, Winter 2017

22

W UNIVERSITY of WASHINGTON

L08: x86 Programming I

Understanding swap ()

Registers Memory Word
Address
Srdi 0x120 456 | 0x120
srsi| 0x100 0x118
$rax 123 Ox110
Srdx 456
123 | 0x100
swap:
movqg (%rdi), %rax # t0 = *xp
movg (%rsi), %rdx # tl = *yp
movqg S$rdx, (%5rdi) # *xp tl
movg %rax, (%rsi) # *yp = tO0
ret

CSE351, Winter 2017

23

W UNIVERSITY of WASHINGTON L08: x86 Programming I

CSE351, Winter 2017

Memory Addressing Modes: Basic

+ Indirect: (R) Mem|[Reg[R]]
= Data in register R specifies the memory address

" |ike pointer dereference in C

= Example: movqg (%rcx), %rax
+ Displacement: D (R) Mem|[Reg[R]+D]

= Data in register R specifies the start of some memory region

" Constant displacement D specifies the offset from that
address
= Example: movqg 8 (%$rbp), %rdx

24

W UNIVERSITY of WASHINGTON

L08: x86 Programming I

Complete Memory Addressing Modes

«» @eneral:

" D(Rb,R1,5)

- Rb: Base register (any register)
- Ri: Index register (any register except $Srsp)
- S: Scale factor (1, 2, 4, 8) — why these numbers?

Mem|[Reg[Rb]+Reg[R1i]*S+D]

Constant displacement value (a.k.a. immediate)

+ Special cases (see CSPP Figure 3.3 on p.181)

= D(Rb,R1)
= (Rb,Ri,S)
" (Rb,Ri)

= (,Ri,S)

Mem
Mem
Mem
Mem

Reg
Reg
Reg
Reg

RDb.
Rb.
Rb.
R1i.

+Reg
+Reg
+Reg
* S]

R1]
Ri]
Ri]

+D]

CSE351, Winter 2017

25

W UNIVERSITY of WASHINGTON L08: x86 Programming I CSE351, Winter 2017

Address Computation Examples

Srdx 0x£000 D(Rb,Ri,S) -
Srex 0x0100 Mem|[Reg[Rb]+Reg[Ri]*S+D]
Expression Address Computation Address

O0x38 (srdx)

(3rdx, srcx)

(3rdx, srcx, 4)

0x380 (, 3rdx, 2)

26

W UNIVERSITY of WASHINGTON

LO08: x86 Programming I CSE351, Winter 2017

Address Computation Examples

Srdx 0x£000 D(Rb,Ri,S) -

Srex 0x0100 Mem|[Reg[Rb]+Reg[Ri]*S+D]
Expression Address Computation Address

0x8 ($rdx) Oxf000 + 0x8 O0x£008

(3rdx, srcx)

Oxf000 + 0x100 Oxf100

(3rdx, srcx, 4)

Oxf000 + 0x100*4 |0xf400

0x380 (, 3rdx, 2)

O0xf000*2 + 0x80 O0x1e080

27

W UNIVERSITY of WASHINGTON g CSE351, Winter 2017

Peer Instruction Question

+» Which of the following statements is TRUE?

(A) The program counter (%rip) is a register
that we manually manipulate

(B) There is only one way to compile a C
program into assembly

(C) Mem to Mem (src to dst) is the only
disallowed operand combination

(D) We can compute an address without using
any registers

28

CSE351, Winter 2017

W UNIVERSITY of WASHINGTON L08: x86 Programming I

Summary

+ Registers are named locations in the CPU for holding
and manipulating data
= x86-64 uses 16 64-bit wide registers

+» Assembly instructions have rigid form

" Operands include immediates, registers, and data at
specified memory locations

" Many instruction variants based on size of data

» Memory Addressing Modes: The addresses used for
accessing memory in mov (and other) instructions can
be computed in several different ways

= Base register, index register, scale factor, and displacement
map well to pointer arithmetic operations

4

29

